版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年江蘇省徐州市邳州市八路中學中考數(shù)學全真模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,連接BC、BD、AC,下列結論中不一定正確的是()A.∠ACB=90° B.OE=BE C.BD=BC D.2.如圖,△ABC為等腰直角三角形,∠C=90°,點P為△ABC外一點,CP=,BP=3,AP的最大值是()A.+3 B.4 C.5 D.33.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分4.某幾何體由若干個大小相同的小正方體搭成,其主視圖與左視圖如圖所示,則搭成這個幾何體的小正方體最少有()A.4個 B.5個 C.6個 D.7個5.如圖,E,B,F(xiàn),C四點在一條直線上,EB=CF,∠A=∠D,再添一個條件仍不能證明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE6.6的絕對值是()A.6 B.﹣6 C. D.7.如圖,以兩條直線l1,l2的交點坐標為解的方程組是()A. B. C. D.8.如圖,由四個正方體組成的幾何體的左視圖是()A. B. C. D.9.如圖,∠AOB=45°,OC是∠AOB的角平分線,PM⊥OB,垂足為點M,PN∥OB,PN與OA相交于點N,那么的值等于()A. B. C. D.10.如圖,正比例函數(shù)y=x與反比例函數(shù)y=4x的圖象交于A(2,2)、B(﹣2,﹣2)兩點,當y=x的函數(shù)值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>211.2016的相反數(shù)是()A. B. C. D.12.函數(shù)y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構成的圖形的面積為__________.14.已知兩圓內切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.15.如圖,圓錐的表面展開圖由一扇形和一個圓組成,已知圓的面積為100π,扇形的圓心角為120°,這個扇形的面積為.16.若式子在實數(shù)范圍內有意義,則x的取值范圍是.17.分解因式2x2﹣4x+2的最終結果是_____.18.有一枚質地均勻的骰子,六個面分別表有1到6的點數(shù),任意將它拋擲兩次,并將兩次朝上面的點數(shù)相加,則其和小于6的概率是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在邊長為1個單位長度的小正方形網格中:(1)畫出△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1.(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,請在網格中畫出△A2B2C2.(3)求△CC1C2的面積.20.(6分)如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點E,交BC的延長線于點F.(1)求證:BF=CD;(2)連接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四邊形ABCD的周長.21.(6分)如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.(1)求證:△BDE≌△BCE;(2)試判斷四邊形ABED的形狀,并說明理由.22.(8分)如圖,拋物線與x軸相交于A、B兩點,與y軸的交于點C,其中A點的坐標為(﹣3,0),點C的坐標為(0,﹣3),對稱軸為直線x=﹣1.(1)求拋物線的解析式;(2)若點P在拋物線上,且S△POC=4S△BOC,求點P的坐標;(3)設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.23.(8分)為了豐富校園文化,促進學生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學開展“書法、武術、黃梅戲進校園”活動.今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績評定為A,B,C,D,E五個等級,該校部分學生參加了學校的比賽,并將比賽結果繪制成如下兩幅不完整的統(tǒng)計圖,請根據圖中信息,解答下列問題.(1)求該校參加本次“黃梅戲”演唱比賽的學生人數(shù);(2)求扇形統(tǒng)計圖B等級所對應扇形的圓心角度數(shù);(3)已知A等級的4名學生中有1名男生,3名女生,現(xiàn)從中任意選取2名學生作為全校訓練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.24.(10分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側),C為頂點,直線y=x+m經過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線經過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數(shù)表達式.25.(10分)如圖,曲線BC是反比例函數(shù)y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),拋物線y=﹣x2+2bx的頂點記作A.(1)求k的值.(2)判斷點A是否可與點B重合;(3)若拋物線與BC有交點,求b的取值范圍.26.(12分)某商場服裝部為了調動營業(yè)員的積極性,決定實行目標管理,根據目標完成的情況對營業(yè)員進行適當?shù)莫剟睿疄榱舜_定一個適當?shù)脑落N售目標,商場服裝部統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),數(shù)據如下:171816132415282618192217161932301614152615322317151528281619對這30個數(shù)據按組距3進行分組,并整理、描述和分析如下.頻數(shù)分布表組別一二三四五六七銷售額頻數(shù)79322數(shù)據分析表平均數(shù)眾數(shù)中位數(shù)20.318請根據以上信息解答下列問題:填空:a=,b=,c=;若將月銷售額不低于25萬元確定為銷售目標,則有位營業(yè)員獲得獎勵;若想讓一半左右的營業(yè)員都能達到銷售目標,你認為月銷售額定為多少合適?說明理由.27.(12分)如圖,在頂點為P的拋物線y=a(x-h)2+k(a≠0)的對稱軸1的直線上取點A(h,k+),過A作BC⊥l交拋物線于B、C兩點(B在C的左側),點和點A關于點P對稱,過A作直線m⊥l.又分別過點B,C作直線BE⊥m和CD⊥m,垂足為E,D.在這里,我們把點A叫此拋物線的焦點,BC叫此拋物線的直徑,矩形BCDE叫此拋物線的焦點矩形.(1)直接寫出拋物線y=x2的焦點坐標以及直徑的長.(2)求拋物線y=x2-x+的焦點坐標以及直徑的長.(3)已知拋物線y=a(x-h)2+k(a≠0)的直徑為,求a的值.(4)①已知拋物線y=a(x-h)2+k(a≠0)的焦點矩形的面積為2,求a的值.②直接寫出拋物線y=x2-x+的焦點短形與拋物線y=x2-2mx+m2+1公共點個數(shù)分別是1個以及2個時m的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據垂徑定理及圓周角定理進行解答即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,故A正確;∵點E不一定是OB的中點,∴OE與BE的關系不能確定,故B錯誤;∵AB⊥CD,AB是⊙O的直徑,∴,∴BD=BC,故C正確;∴,故D正確.故選B.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.2、C【解析】
過點C作,且CQ=CP,連接AQ,PQ,證明≌根據全等三角形的性質,得到根據等腰直角三角形的性質求出PQ的長度,進而根據,即可解決問題.【詳解】過點C作,且CQ=CP,連接AQ,PQ,在和中≌AP的最大值是5.故選:C.【點睛】考查全等三角形的判定與性質,三角形的三邊關系,作出輔助線是解題的關鍵.3、D【解析】
解:總人數(shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數(shù)據都是96分,這些職工成績的中位數(shù)是(96+96)÷2=96;這些職工成績的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點睛】本題考查1.中位數(shù);2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;1.算術平均數(shù),掌握概念正確計算是關鍵.4、B【解析】
由主視圖和左視圖確定俯視圖的形狀,再判斷最少的正方體的個數(shù).【詳解】由主視圖和左視圖可確定所需正方體個數(shù)最少時俯視圖(數(shù)字為該位置小正方體的個數(shù))為:則搭成這個幾何體的小正方體最少有5個,故選B.【點睛】本題考查了由三視圖判斷幾何體,根據主視圖和左視圖畫出所需正方體個數(shù)最少的俯視圖是關鍵.【詳解】請在此輸入詳解!【點睛】請在此輸入點睛!5、A【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB與原條件滿足SSA,不能證明△ABC≌△DEF,故A選項正確.B、添加DF∥AC,可得∠DFE=∠ACB,根據AAS能證明△ABC≌△DEF,故B選項錯誤.C、添加∠E=∠ABC,根據AAS能證明△ABC≌△DEF,故C選項錯誤.D、添加AB∥DE,可得∠E=∠ABC,根據AAS能證明△ABC≌△DEF,故D選項錯誤,故選A.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.6、A【解析】試題分析:1是正數(shù),絕對值是它本身1.故選A.考點:絕對值.7、C【解析】
兩條直線的交點坐標應該是聯(lián)立兩個一次函數(shù)解析式所組成的方程組的解.因此本題需先根據兩直線經過的點的坐標,用待定系數(shù)法求出兩直線的解析式.然后聯(lián)立兩函數(shù)的解析式可得出所求的方程組.【詳解】直線l1經過(2,3)、(0,-1),易知其函數(shù)解析式為y=2x-1;直線l2經過(2,3)、(0,1),易知其函數(shù)解析式為y=x+1;因此以兩條直線l1,l2的交點坐標為解的方程組是:.故選C.【點睛】本題主要考查了函數(shù)解析式與圖象的關系,滿足解析式的點就在函數(shù)的圖象上,在函數(shù)的圖象上的點,就一定滿足函數(shù)解析式.函數(shù)圖象交點坐標為兩函數(shù)解析式組成的方程組的解.8、B【解析】從左邊看可以看到兩個小正方形摞在一起,故選B.9、B【解析】
過點P作PE⊥OA于點E,根據角平分線上的點到角的兩邊的距離相等可得PE=PM,再根據兩直線平行,內錯角相等可得∠POM=∠OPN,根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠PNE=∠AOB,再根據直角三角形解答.【詳解】如圖,過點P作PE⊥OA于點E,∵OP是∠AOB的平分線,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴=.故選:B.【點睛】本題考查了角平分線上的點到角的兩邊距離相等的性質,直角三角形的性質,以及三角形的一個外角等于與它不相鄰的兩個內角的和,作輔助線構造直角三角形是解題的關鍵.10、D【解析】試題分析:觀察函數(shù)圖象得到當﹣2<x<0或x>2時,正比例函數(shù)圖象都在反比例函數(shù)圖象上方,即有y=x的函數(shù)值大于y=4考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2.數(shù)形結合思想的應用.11、C【解析】根據相反數(shù)的定義“只有符號不同的兩個數(shù)互為相反數(shù)”可知:2016的相反數(shù)是-2016.故選C.12、D【解析】試題分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點睛:本題考查了函數(shù)中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、12.2【解析】
∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.14、1【解析】
由兩圓的半徑分別為2和5,根據兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系和兩圓位置關系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點睛】此題考查了圓與圓的位置關系.解題的關鍵是掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系.15、300π【解析】試題分析:首先根據底面圓的面積求得底面的半徑,然后結合弧長公式求得扇形的半徑,然后利用扇形的面積公式求得側面積即可.∵底面圓的面積為100π,∴底面圓的半徑為10,∴扇形的弧長等于圓的周長為20π,設扇形的母線長為r,則=20π,解得:母線長為30,∴扇形的面積為πrl=π×10×30=300π考點:(1)、圓錐的計算;(2)、扇形面積的計算16、.【解析】
根據二次根式被開方數(shù)必須是非負數(shù)的條件,要使在實數(shù)范圍內有意義,必須.故答案為17、1(x﹣1)1【解析】
先提取公因式1,再根據完全平方公式進行二次分解.【詳解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1.故答案為:1(x﹣1)1【點睛】本題考查提公因式法與公式法的綜合運用,難度不大.18、【解析】
列舉出所有情況,看兩個骰子向上的一面的點數(shù)和小于6的情況占總情況的多少即可.【詳解】解:列表得:
兩個骰子向上的一面的點數(shù)和小于6的有10種,
則其和小于6的概率是,
故答案為:.【點睛】本題考查了列表法與樹狀圖法,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件樹狀圖法適用于兩步或兩步以上完成的事件解題時還要注意是放回實驗還是不放回實驗用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析(2)見解析(3)9【解析】試題分析:(1)將△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1,如圖所示;(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,如圖所示.試題解析:(1)根據題意畫出圖形,△A1B1C1為所求三角形;(2)根據題意畫出圖形,△A2B2C2為所求三角形.考點:1.作圖-位似變換,2.作圖-平移變換20、(1)證明見解析;(2)12【解析】
(1)由平行四邊形的性質和角平分線得出∠BAF=∠BFA,即可得出AB=BF;(2)由題意可證△ABF為等邊三角形,點E是AF的中點.可求EF、BF的值,即可得解.【詳解】解:(1)證明:∵四邊形ABCD為平行四邊形,∴AB=CD,∠FAD=∠AFB又∵AF平分∠BAD,∴∠FAD=∠FAB∴∠AFB=∠FAB∴AB=BF∴BF=CD(2)解:由題意可證△ABF為等邊三角形,點E是AF的中點在Rt△BEF中,∠BFA=60°,BE=,可求EF=2,BF=4∴平行四邊形ABCD的周長為1221、證明見解析.【解析】
(1)根據旋轉的性質可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據垂直可得出∠DBE=∠CBE=30°,繼而可根據SAS證明△BDE≌△BCE;(2)根據(1)以及旋轉的性質可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【詳解】(1)證明:∵△BAD是由△BEC在平面內繞點B旋轉60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點:旋轉的性質;全等三角形的判定與性質;菱形的判定.22、(1)y=x2+2x﹣3;(2)點P的坐標為(2,21)或(﹣2,5);(3).【解析】
(1)先根據點A坐標及對稱軸得出點B坐標,再利用待定系數(shù)法求解可得;(2)利用(1)得到的解析式,可設點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.然后依據S△POC=2S△BOC列出關于a的方程,從而可求得a的值,于是可求得點P的坐標;(3)先求得直線AC的解析式,設點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3),然后可得到QD與x的函數(shù)的關系,最后利用配方法求得QD的最大值即可.【詳解】解:(1)∵拋物線與x軸的交點A(﹣3,0),對稱軸為直線x=﹣1,∴拋物線與x軸的交點B的坐標為(1,0),設拋物線解析式為y=a(x+3)(x﹣1),將點C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,則拋物線解析式為y=(x+3)(x﹣1)=x2+2x﹣3;(2)設點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.∵S△POC=2S△BOC,∴?OC?|a|=2×OC?OB,即×3×|a|=2××3×1,解得a=±2.當a=2時,點P的坐標為(2,21);當a=﹣2時,點P的坐標為(﹣2,5).∴點P的坐標為(2,21)或(﹣2,5).(3)如圖所示:設AC的解析式為y=kx﹣3,將點A的坐標代入得:﹣3k﹣3=0,解得k=﹣1,∴直線AC的解析式為y=﹣x﹣3.設點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴當x=﹣時,QD有最大值,QD的最大值為.【點睛】本題主要考查了二次函數(shù)綜合題,解題的關鍵是熟練掌握二次函數(shù)的性質和應用.23、(1)50;(2)115.2°;(3)12【解析】(1)先求出參加本次比賽的學生人數(shù);(2)由(1)求出的學生人數(shù),即可求出B等級所對應扇形的圓心角度數(shù);(3)首先根據題意列表或畫出樹狀圖,然后由求得所有等可能的結果,再利用概率公式即可求得答案.解:(1)參加本次比賽的學生有:4÷8%=50(人)(2)B等級的學生共有:50-4-20-8-2=16(人).∴所占的百分比為:16÷50=32%∴B等級所對應扇形的圓心角度數(shù)為:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能的結果,選中1名男生和1名女生結果的有6種.∴P(選中1名男生和1名女生)=6“點睛”本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,然后根據概率公式求出事件A或B的概率.通過扇形統(tǒng)計圖求出扇形的圓心角度數(shù),應用數(shù)形結合的思想是解決此類題目的關鍵.24、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】
(1)解方程求出點A的坐標,根據勾股定理計算即可;(1)設新拋物線對應的函數(shù)表達式為:y=x1+bx+1,根據二次函數(shù)的性質求出點C′的坐標,根據題意求出直線CC′的解析式,代入計算即可.【詳解】解:(1)由x1﹣4=0得,x1=﹣1,x1=1,∵點A位于點B的左側,∴A(﹣1,0),∵直線y=x+m經過點A,∴﹣1+m=0,解得,m=1,∴點D的坐標為(0,1),∴AD==1;(1)設新拋物線對應的函數(shù)表達式為:y=x1+bx+1,y=x1+bx+1=(x+)1+1﹣,則點C′的坐標為(﹣,1﹣),∵CC′平行于直線AD,且經過C(0,﹣4),∴直線CC′的解析式為:y=x﹣4,∴1﹣=﹣﹣4,解得,b1=﹣4,b1=6,∴新拋物線對應的函數(shù)表達式為:y=x1﹣4x+1或y=x1+6x+1.【點睛】本題考查的是拋物線與x軸的交點、待定系數(shù)法求函數(shù)解析式,掌握二次函數(shù)的性質、拋物線與x軸的交點的求法是解題的關鍵.25、(1)12;(2)點A不與點B重合;(3)【解析】
(1)把B、C兩點代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,從而求得k的值;(2)由拋物線解析式得到頂點A(b,b2),如果點A與點B重合,則有b=4,且b2=3,顯然不成立;(3)當拋物線經過點B(4,3)時,解得,b=,拋物線右半支經過點B;當拋物線經過點C,解得,b=,拋物線右半支經過點C;從而求得b的取值范圍為≤b≤.【詳解】解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函數(shù)的圖象上,∴k=4(1﹣m)=6×(﹣m),∴解得m=﹣2,∴k=4×[1﹣(﹣2)]=12;(2)∵m=﹣2,∴B(4,3),∵拋物線y=﹣x2+2bx=﹣(x﹣b)2+b2,∴A(b,b2).若點A與點B重合,則有b=4,且b2=3,顯然不成立,∴點A不與點B重合;(3)當拋物線經過點B(4,3)時,有3=﹣42+2b×4,解得,b=,顯然拋物線右半支經過點B;當拋物線經過點C(6,2)時,有2=﹣62+2b×6,解得,b=,這時仍然是拋物線右半支經過點C,∴b的取值范圍為≤b≤.【點睛】本題考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,解題的關鍵是學會用討論的思想思考問題.26、(1)眾數(shù)為15;(2)3,4,15;8;(3)月銷售額定為18萬,有一半左右的營業(yè)員能達到銷售目標.【解析】
根據數(shù)據可得到落在第四組、第六組的個數(shù)分別為3個、4個,所以a=3,b=4,再根據數(shù)據可得15出現(xiàn)了5次,出現(xiàn)次數(shù)最多,所以眾數(shù)c=15;從頻數(shù)分布表中可以看出月銷售額不低于25萬元的營業(yè)員有8個,所以本小題答案為:8;本題是考查中位數(shù)的知識,根據中位數(shù)可以讓一半左右的營業(yè)員達到銷售目標.【詳解】解:(1)在范圍內的數(shù)據有3個,在范圍內的數(shù)據有4個,15出現(xiàn)的次數(shù)最大,則眾數(shù)為15;(2)月銷售額不低于25萬元為后面三組數(shù)據,即有8位營業(yè)員獲得獎勵;故答案為3,4,15;8;(3)想讓一半左右的營業(yè)員都能達到銷售目標,我認為月銷售額定為18萬合適.因為中位數(shù)為18,即大于18與小于18的人數(shù)一樣多,所以月銷售額定為18萬,有一半左右的營業(yè)員能達到銷售目標.【點睛】本題考査了對樣本數(shù)據進行分析的相關知識,考查了頻數(shù)分布表、平均數(shù)、眾數(shù)和中位數(shù)的知識,解題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網絡互聯(lián)對全球化經濟的影響力
- 愛洗手的好寶寶健康活動
- 河南省2024九年級語文上冊第五單元19懷疑與學問課件新人教版
- 紅細胞增多癥的診斷與治療
- 結核骨影像鑒別病
- 吉林省2024七年級數(shù)學上冊第2章整式及其加減2.4整式的加減4.整式的加減課件新版華東師大版
- 黃瓜生長期枯萎病與防治
- 骨傷科的治療方法
- 氧化碳制取的研究的說課稿
- 紅樓夢說課稿
- 化驗室化學試劑分類清單(參考模板)
- 三教”統(tǒng)一、和諧發(fā)展促進學生健康成長的有效方式
- 材料成型概論 第四章 擠壓成型
- 六盤水氣候特征
- 輻射安全責任書
- 第五章水輪機特性曲線
- 職業(yè)病防治(課堂PPT)
- 建設工程項目施工安全評價書(共10頁)
- 機場助航燈光設計講解
- fairytale傳奇英文版歌詞
- 消毒記錄臺賬
評論
0/150
提交評論