2022屆吉林省四平市第14中學畢業(yè)升學考試模擬卷數學卷含解析_第1頁
2022屆吉林省四平市第14中學畢業(yè)升學考試模擬卷數學卷含解析_第2頁
2022屆吉林省四平市第14中學畢業(yè)升學考試模擬卷數學卷含解析_第3頁
2022屆吉林省四平市第14中學畢業(yè)升學考試模擬卷數學卷含解析_第4頁
2022屆吉林省四平市第14中學畢業(yè)升學考試模擬卷數學卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆吉林省四平市第14中學畢業(yè)升學考試模擬卷數學卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算-5+1的結果為()A.-6 B.-4 C.4 D.62.下列運算不正確的是A.a5+C.2a23.一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時間的函數圖形如圖所示,下列說法正確的有()①快車追上慢車需6小時;②慢車比快車早出發(fā)2小時;③快車速度為46km/h;④慢車速度為46km/h;⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時A.2個 B.3個 C.4個 D.5個4.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點,則CM的長為()A. B.2 C. D.35.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:66.如圖,在△ABC中,以點B為圓心,以BA長為半徑畫弧交邊BC于點D,連接AD.若∠B=40°,∠C=36°,則∠DAC的度數是()A.70° B.44° C.34° D.24°7.已知,如圖,AB是⊙O的直徑,點D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數是()A.75° B.65° C.60° D.50°8.如圖,△ABC是⊙O的內接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點D,連接BD,則∠DBC的大小為()A.15° B.35° C.25° D.45°9.剪紙是我國傳統的民間藝術,下列剪紙作品中既不是軸對稱圖形,也不是中心對稱圖形的是()A. B. C. D.10.如圖,AB為⊙O的直徑,C、D為⊙O上的點,若AC=CD=DB,則cos∠CAD=()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B、C重合的一個動點,把△EBF沿EF折疊,點B落在B′處,若△CDB′恰為等腰三角形,則DB′的長為.12.如圖,平面直角坐標系中,矩形OABC的頂點A(﹣6,0),C(0,2).將矩形OABC繞點O順時針方向旋轉,使點A恰好落在OB上的點A1處,則點B的對應點B1的坐標為_____.13.計算:﹣|﹣2|+()﹣1=_____.14.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=1DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正確結論的是_____.15.關于x的一元二次方程x2+bx+c=0的兩根為x1=1,x2=2,則x2+bx+c分解因式的結果為_____.16.對于一切不小于2的自然數n,關于x的一元二次方程x2﹣(n+2)x﹣2n2=0的兩個根記作an,bn(n≥2),則______17.觀察下列的“蜂窩圖”按照它呈現的規(guī)律第n個圖案中的“”的個數是_____(用含n的代數式表示)三、解答題(共7小題,滿分69分)18.(10分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?19.(5分)如圖二次函數的圖象與軸交于點和兩點,與軸交于點,點、是二次函數圖象上的一對對稱點,一次函數的圖象經過、求二次函數的解析式;寫出使一次函數值大于二次函數值的的取值范圍;若直線與軸的交點為點,連結、,求的面積;20.(8分)太陽能光伏建筑是現代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結果精確到0.1米)21.(10分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.22.(10分)如圖,以AD為直徑的⊙O交AB于C點,BD的延長線交⊙O于E點,連CE交AD于F點,若AC=BC.(1)求證:;(2)若,求tan∠CED的值.23.(12分)(1)|﹣2|+?tan30°+(2018﹣π)0-()-1(2)先化簡,再求值:(﹣1)÷,其中x的值從不等式組的整數解中選?。?4.(14分)如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E求證:△ACD≌△AED;若∠B=30°,CD=1,求BD的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據有理數的加法法則計算即可.【詳解】解:-5+1=-(5-1)=-1.故選B.【點睛】本題考查了有理數的加法.2、B【解析】(-2a3、B【解析】

根據圖形給出的信息求出兩車的出發(fā)時間,速度等即可解答.【詳解】解:①兩車在276km處相遇,此時快車行駛了4個小時,故錯誤.②慢車0時出發(fā),快車2時出發(fā),故正確.③快車4個小時走了276km,可求出速度為69km/h,錯誤.④慢車6個小時走了276km,可求出速度為46km/h,正確.⑤慢車走了18個小時,速度為46km/h,可得A,B距離為828km,正確.⑥快車2時出發(fā),14時到達,用了12小時,錯誤.故答案選B.【點睛】本題考查了看圖手機信息的能力,注意快車并非0時刻出發(fā)是解題關鍵.4、C【解析】

延長BC到E使BE=AD,利用中點的性質得到CM=DE=AB,再利用勾股定理進行計算即可解答.【詳解】解:延長BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點,∵M是BD的中點,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點睛】此題考查平行四邊形的性質,勾股定理,解題關鍵在于作輔助線.5、C【解析】

根據AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,

∴.

∴△FEC面積是△AEF面積的2倍.

設△AEF面積為x,則△AEC面積為3x,

∵E為AD中點,

∴△DEC面積=△AEC面積=3x.

∴四邊形FCDE面積為1x,

所以S△AFE:S四邊形FCDE為1:1.

故選:C.【點睛】本題考查相似三角形的判定和性質、平行四邊形的性質,解題關鍵是通過線段的比得到三角形面積的關系.6、C【解析】

易得△ABD為等腰三角形,根據頂角可算出底角,再用三角形外角性質可求出∠DAC【詳解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故選C.【點睛】本題考查三角形的角度計算,熟練掌握三角形外角性質是解題的關鍵.7、B【解析】因為AB是⊙O的直徑,所以求得∠ADB=90°,進而求得∠B的度數,又因為∠B=∠C,所以∠C的度數可求出.解:∵AB是⊙O的直徑,

∴∠ADB=90°.

∵∠BAD=25°,

∴∠B=65°,

∴∠C=∠B=65°(同弧所對的圓周角相等).

故選B.

8、A【解析】

根據等腰三角形的性質以及三角形內角和定理可得∠A=50°,再根據平行線的性質可得∠ACD=∠A=50°,由圓周角定理可行∠D=∠A=50°,再根據三角形內角和定理即可求得∠DBC的度數.【詳解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故選A.【點睛】本題考查了等腰三角形的性質,圓周角定理,三角形內角和定理等,熟練掌握相關內容是解題的關鍵.9、C【解析】【分析】根據軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;D、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤,故選C.【點睛】本題主要考查軸對稱圖形和中心對稱圖形,在平面內,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內,如果把一個圖形繞某個點旋轉180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.10、D【解析】

根據圓心角,弧,弦的關系定理可以得出===,根據圓心角和圓周角的關鍵即可求出的度數,進而求出它的余弦值.【詳解】解:===,故選D.【點睛】本題考查圓心角,弧,弦,圓周角的關系,熟記特殊角的三角函數值是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、36或4.【解析】

(3)當B′D=B′C時,過B′點作GH∥AD,則∠B′GE=90°,當B′C=B′D時,AG=DH=DC=8,由AE=3,AB=36,得BE=3.由翻折的性質,得B′E=BE=3,∴EG=AG﹣AE=8﹣3=5,∴B′G===33,∴B′H=GH﹣B′G=36﹣33=4,∴DB′===;(3)當DB′=CD時,則DB′=36(易知點F在BC上且不與點C、B重合);(3)當CB′=CD時,∵EB=EB′,CB=CB′,∴點E、C在BB′的垂直平分線上,∴EC垂直平分BB′,由折疊可知點F與點C重合,不符合題意,舍去.綜上所述,DB′的長為36或.故答案為36或.考點:3.翻折變換(折疊問題);3.分類討論.12、(-2,6)【解析】分析:連接OB1,作B1H⊥OA于H,證明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.詳解:連接OB1,作B1H⊥OA于H,由題意得,OA=6,AB=OC-2,則tan∠BOA=,∴∠BOA=30°,∴∠OBA=60°,由旋轉的性質可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB和△HB1O,,∴△AOB≌△HB1O,∴B1H=OA=6,OH=AB=2,∴點B1的坐標為(-2,6),故答案為(-2,6).點睛:本題考查的是矩形的性質、旋轉變換的性質,掌握矩形的性質、全等三角形的判定和性質定理是解題的關鍵.13、﹣1【解析】

根據立方根、絕對值及負整數指數冪等知識點解答即可.【詳解】原式=-2-2+3=-1【點睛】本題考查了實數的混合運算,解題的關鍵是掌握運算法則及運算順序.14、①②③【解析】

根據翻折變換的性質和正方形的性質可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據勾股定理可證BG=GC;通過證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.【詳解】①正確.

理由:

∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設BG=FG=x,則CG=6-x.在直角△ECG中,根據勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④錯誤.理由:∵S△GCE=GC?CE=×1×4=6

∵GF=1,EF=2,△GFC和△FCE等高,

∴S△GFC:S△FCE=1:2,

∴S△GFC=×6=≠1.

故④不正確.

∴正確的個數有1個:①②③.故答案為①②③【點睛】本題綜合性較強,考查了翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,平行線的判定,三角形的面積計算,有一定的難度.15、(x﹣1)(x﹣2)【解析】

根據方程的兩根,可以將方程化為:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,對比原方程即可得到所求代數式的因式分解的結果.【詳解】解:已知方程的兩根為:x1=1,x2=2,可得:(x﹣1)(x﹣2)=0,∴x2+bx+c=(x﹣1)(x﹣2),故答案為:(x﹣1)(x﹣2).【點睛】一元二次方程ax2+bx+c=0(a≠0,a、b、c是常數),若方程的兩根是x1和x2,則ax2+bx+c=a(x﹣x1)(x﹣x2)16、﹣.【解析】試題分析:由根與系數的關系得:,則,則,∴原式=.點睛:本題主要考查的就是一元二次方程的韋達定理以及規(guī)律的整理,屬于中等題型.解決這個問題的關鍵就是要想到使用韋達定理,然后根據計算的法則得出規(guī)律,從而達到簡便計算的目的.17、3n+1【解析】

根據題意可知:第1個圖有4個圖案,第2個共有7個圖案,第3個共有10個圖案,第4個共有13個圖案,由此可得出規(guī)律.【詳解】解:由題意可知:每1個都比前一個多出了3個“”,∴第n個圖案中共有“”為:4+3(n﹣1)=3n+1故答案為:3n+1.【點睛】本題考查學生的觀察能力,解題的關鍵是熟練正確找出圖中的規(guī)律,本題屬于基礎題型.三、解答題(共7小題,滿分69分)18、(1)2000;(2)2米【解析】

(1)設未知數,根據題目中的的量關系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【詳解】解:(1)設該項綠化工程原計劃每天完成x米2,根據題意得:﹣=4解得:x=2000,經檢驗,x=2000是原方程的解;答:該綠化項目原計劃每天完成2000平方米;(2)設人行道的寬度為x米,根據題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.19、(1);(2)或;(3)1.【解析】

(1)直接將已知點代入函數解析式求出即可;(2)利用函數圖象結合交點坐標得出使一次函數值大于二次函數值的x的取值范圍;(3)分別得出EO,AB的長,進而得出面積.【詳解】(1)∵二次函數與軸的交點為和∴設二次函數的解析式為:∵在拋物線上,∴3=a(0+3)(0-1),解得a=-1,所以解析式為:;(2)=?x2?2x+3,∴二次函數的對稱軸為直線;∵點、是二次函數圖象上的一對對稱點;∴;∴使一次函數大于二次函數的的取值范圍為或;(3)設直線BD:y=mx+n,代入B(1,0),D(?2,3)得,解得:,故直線BD的解析式為:y=?x+1,把x=0代入得,y=3,所以E(0,1),∴OE=1,又∵AB=1,∴S△ADE=×1×3?×1×1=1.【點睛】此題主要考查了待定系數法求一次函數和二次函數解析式,利用數形結合得出是解題關鍵.20、1.9米【解析】試題分析:在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數定義求出CD的長,在直角三角形ACD中,由∠ACD度數,以及CD的長,利用銳角三角函數定義求出AD的長即可.試題解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC?sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD?tan∠ACD=5.9×0.32=1.888≈1.9(米),則改建后南屋面邊沿增加部分AD的長約為1.9米.考點:解直角三角形的應用21、(1)作圖見解析;;(2)作圖見解析.【解析】試題分析:(1)通過數格子可得到點P關于AC的對稱點,再直接利用勾股定理可得到周長;(2)利用網格結合矩形的性質以及勾股定理可畫出矩形.試題解析:(1)如圖1所示:四邊形AQCP即為所求,它的周長為:;(2)如圖2所示:四邊形ABCD即為所求.考點:1軸對稱;2勾股定理.22、(1)見解析;(2)tan∠CED=【解析】

(1)欲證明,只要證明即可;(2)由,可得,設FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,由,可得BD?BE=BC?BA,設AC=BC=x,則有,由此求出AC、CD即可解決問題.【詳解】(1)證明:如下圖,連接AE,∵AD是直徑,∴,∴DC⊥AB,∵AC=CB,∴DA=DB,∴∠CDA=∠CDB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論