版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆廣西玉林高中、柳鐵一中高一下數(shù)學(xué)期末調(diào)研試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)若關(guān)于的方程恰有兩個互異的實數(shù)解,則的取值范圍為A. B. C. D.2.下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的為()A. B. C. D.3.同時擲兩枚骰子,所得點數(shù)之和為5的概率為()A. B. C. D.4.已知數(shù)列{an}為等差數(shù)列,,=1,若,則=()A.22019 B.22020 C.22017 D.220185.無窮數(shù)列1,3,6,10,…的通項公式為()A. B.C. D.6.已知三棱錐中,,,則三棱錐的外接球的表面積為()A. B.4 C. D.7.已知等差數(shù)列中,,則公差()A. B. C.1 D.28.已知向量,且為正實數(shù),若滿足,則的最小值為()A. B. C. D.9.為三角形ABC的一個內(nèi)角,若,則這個三角形的形狀為()A.銳角三角形 B.鈍角三角形C.等腰直角三角形 D.等腰三角形10.已知關(guān)于的不等式的解集為,則的值為()A.4 B.5 C.7 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.等比數(shù)列的公比為,其各項和,則______________.12.已知不等式的解集為,則________.13.設(shè)的內(nèi)角,,所對的邊分別為,,.已知,,如果解此三角形有且只有兩個解,則的取值范圍是_____.14.據(jù)兩個變量、之間的觀測數(shù)據(jù)畫成散點圖如圖,這兩個變量是否具有線性相關(guān)關(guān)系_____(答是與否).15.已知等差數(shù)列,,,,則______.16.關(guān)于函數(shù)有下列命題:①由可得必是的整數(shù)倍;②的圖像關(guān)于點對稱,其中正確的序號是____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知是同一平面內(nèi)的三個向量,其中為單位向量.(Ⅰ)若//,求的坐標(biāo);(Ⅱ)若與垂直,求與的夾角.18.如圖,在正中,,.(1)試用,表示;(2)若,,求.19.已知圓心在直線上的圓C經(jīng)過點,且與直線相切.(1)求過點P且被圓C截得的弦長等于4的直線方程;(2)過點P作兩條相異的直線分別與圓C交于A,B,若直線PA,PB的傾斜角互補(bǔ),試判斷直線AB與OP的位置關(guān)系(O為坐標(biāo)原點),并證明.20.如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明:;(2)求三棱錐的體積.21.已知不等式的解集為或.(1)求實數(shù)a,b的值;(2)解不等式.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
畫出圖象及直線,借助圖象分析.【詳解】如圖,當(dāng)直線位于點及其上方且位于點及其下方,或者直線與曲線相切在第一象限時符合要求.即,即,或者,得,,即,得,所以的取值范圍是.故選D.【點睛】根據(jù)方程實根個數(shù)確定參數(shù)范圍,常把其轉(zhuǎn)化為曲線交點個數(shù),特別是其中一條為直線時常用此法.2、D【解析】
根據(jù)奇函數(shù)和增函數(shù)的定義逐項判斷.【詳解】選項A:不是奇函數(shù),不正確;選項B::在是減函數(shù),不正確;選項C:定義域上沒有單調(diào)性,不正確;選項D:設(shè),是奇函數(shù),,在都是單調(diào)遞增,且在處是連續(xù)的,在上單調(diào)遞增,所以正確.故選:D.【點睛】本題考查函數(shù)的性質(zhì),對于常用函數(shù)的性質(zhì)要熟練掌握,屬于基礎(chǔ)題.3、C【解析】
求出基本事件空間,找到符合條件的基本事件,可求概率.【詳解】同時擲兩枚骰子,所有可能出現(xiàn)的結(jié)果有:共有36種,點數(shù)之和為5的基本事件有:共4種;所以所求概率為.故選C.【點睛】本題主要考查古典概率的求解,側(cè)重考查數(shù)學(xué)建模的核心素養(yǎng).4、A【解析】
根據(jù)等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì)即可求出.【詳解】由題知∵數(shù)列{an}為等差數(shù)列,an≠1(n∈N*),a1+a2019=1,∴a1+a2019=a2+a2018=a3+a2017=…=a1009+a1011a1010=1,∴a1010∴f(a1)×f(a2)×…×f(a2019)=41009×(﹣2)=﹣1.故選A.【點睛】本題考查了等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于中檔題,注意:若{an}為等差數(shù)列,且m+n=p+q,則,性質(zhì)的應(yīng)用.5、C【解析】試題分析:由累加法得:,分別相加得,,故選C.考點:數(shù)列的通項公式.6、B【解析】
依據(jù)題中數(shù)據(jù),利用勾股定理可判斷出從而可得三棱錐各面都為直角三角形,進(jìn)而可知外接圓的直徑,即可求出三棱錐的外接球的表面積【詳解】如圖,因為,又,,從而可得三棱錐各面都為直角三角形,CD是三棱錐的外接球的直徑,在中,,,即,,故選B.【點睛】本題主要考查學(xué)生空間想象以及數(shù)學(xué)建模能力,能夠依據(jù)條件建立合適的模型是解題的關(guān)鍵.7、C【解析】
利用通項得到關(guān)于公差d的方程,解方程即得解.【詳解】由題得.故選C【點睛】本題主要考查數(shù)列的通項的基本量的計算,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.8、A【解析】
根據(jù)向量的數(shù)量積結(jié)合基本不等式即可.【詳解】由題意得,因為,為正實數(shù),則當(dāng)且僅當(dāng)時取等.所以選擇A【點睛】本題主要考查了向量的數(shù)量積以及基本不等式,在用基本不等式時要滿足一正二定三相等.屬于中等題9、B【解析】試題分析:由,兩邊平方得,即,又,則,所以為第三、四象限角或軸負(fù)半軸上的角,所以為鈍角.故正確答案為B.考點:1.三角函數(shù)的符號、平方關(guān)系;2.三角形內(nèi)角.10、D【解析】
將原不等式化簡后,根據(jù)不等式的解集列方程組,求得的值,進(jìn)而求得的值.【詳解】由得,依題意上述不等式的解集為,故,解得(舍去),故.故選:D.【點睛】本小題主要考查類似:已知一元二次不等式解集求參數(shù),考查函數(shù)與方程的思想,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用等比數(shù)列各項和公式可得出關(guān)于的方程,解出即可.【詳解】由于等比數(shù)列的公比為,其各項和,可得,解得.故答案為:.【點睛】本題考查等比數(shù)列中基本量的計算,利用等比數(shù)列各項和公式列等式是關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.12、-7【解析】
結(jié)合一元二次不等式和一元二次方程的性質(zhì),列出方程組,求得的值,即可得到答案.【詳解】由不等式的解集為,可得,解得,所以.故答案為:.【點睛】本題主要考查了一元二次不等式的解法,以及一元二次方程的性質(zhì),其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、【解析】
由余弦定理寫出c與x的等式,再由有兩個正解,解出x的取值范圍【詳解】根據(jù)余弦定理:代入數(shù)據(jù)并整理有,有且僅有兩個解,記為則:【點睛】本題主要考查余弦定理以及韋達(dá)定理,屬于中檔題.14、否【解析】
根據(jù)散點圖的分布來判斷出兩個變量是否具有線性相關(guān)關(guān)系.【詳解】由散點圖可知,散點圖分布無任何規(guī)律,不在一條直線附近,所以,這兩個變量沒有線性相關(guān)關(guān)系,故答案為否.【點睛】本題考查利用散點圖判斷兩變量之間的線性相關(guān)關(guān)系,考查對散點圖概念的理解,屬于基礎(chǔ)題.15、【解析】
利用等差中項的基本性質(zhì)求得,,并利用等差中項的性質(zhì)求出的值,由此可得出的值.【詳解】由等差中項的性質(zhì)可得,同理,由于、、成等差數(shù)列,所以,則,因此,.故答案為:.【點睛】本題考查利用等差中項的性質(zhì)求值,考查計算能力,屬于基礎(chǔ)題.16、②【解析】
對①,可令求出的通式,再進(jìn)行判斷;對②,將代入檢驗是否為0即可【詳解】對①,令得,可令,,①錯;對②,當(dāng)時,,②對故正確序號為:②故答案為②【點睛】本題考查三角函數(shù)的基本性質(zhì),屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)或(Ⅱ)【解析】
(Ⅰ)設(shè),根據(jù)向量的模和共線向量的條件,列出方程組,即可求解.(Ⅱ)由,根據(jù)向量的運(yùn)算求得,再利用向量的夾角公式,即可求解.【詳解】(Ⅰ)設(shè)由題則有解得或,.(Ⅱ)由題即,.【點睛】本題主要考查了向量的坐標(biāo)運(yùn)算,共線向量的條件及向量的夾角公式的應(yīng)用,其中解答中熟記向量的基本概念和運(yùn)算公式,合理準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.18、(1);(2)-2【解析】
(1)由,可得,整理可求出答案;(2)用、分別表示和,進(jìn)而求出即可.【詳解】(1)因為,則,所以.(2)當(dāng)時,,因為,所以為邊的三等分點,則,故.【點睛】本題考查平面向量的線性運(yùn)算,考查向量的數(shù)量積,考查學(xué)生的計算能力與推理能力,屬于基礎(chǔ)題.19、(1)或;(2)平行【解析】
(1)設(shè)出圓的圓心為,半徑為,可得圓的標(biāo)準(zhǔn)方程,根據(jù)題意可得,解出即可得出圓的方程,討論過點P的直線斜率存在與否,再根據(jù)點到直線的距離公式即可求解.(2)由題意知,直線PA,PB的傾斜角互補(bǔ),分類討論兩直線的斜率存在與否,當(dāng)斜率均存在時,則直線PA的方程為:,直線PB的方程為:,分別與圓C聯(lián)立可得,利用斜率的計算公式與作比較即可.【詳解】(1)根據(jù)題意,不妨設(shè)圓C的圓心為,半徑為,則圓C,由圓C經(jīng)過點,且與直線相切,則,解得,故圓C的方程為:,所以點在圓上,過點P且被圓C截得的弦長等于4的直線,當(dāng)直線的斜率不存在時,直線為:,滿足題意;當(dāng)直線的斜率存在時,設(shè)直線的斜率為,直線方程為:,故,解得,故直線方程為:.綜上所述:所求直線的方程:或.(2)由題意知,直線PA,PB的傾斜角互補(bǔ),且直線PA,PB的斜率均存在,設(shè)兩直線的傾斜角為和,,,因為,由正切的性質(zhì),則,不妨設(shè)直線的斜率為,則PB的斜率為,即:,則:,由,得,點的橫坐標(biāo)為一定是該方程的解,故可得,同理,,,,直線AB與OP平行.【點睛】本題考查了圓的標(biāo)準(zhǔn)方程,已知弦長求直線方程,考查了直線與圓的位置關(guān)系以及學(xué)生的計算能力,屬于中檔題.20、(1)見解析;(2)【解析】
(1)以A為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,求出BE,DC的方向向量,根據(jù)?=0,可得BE⊥DC;(2)由點為棱的中點,且底面,利用等體積法得.【詳解】(1)∵底面,,以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,∵,,點為棱的中點.∴(1,0,0),(2,2,0),(0,2,0),(0,0,2),(1,1,1)∴=(0,1,1),=(2,0,0),∵?=0,可得BE⊥DC;(2)由點為棱的中點,且底面,利用等體積法得.【點睛】本題考查了空間線面垂直的判定,利用了向量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公設(shè)備購銷合同專業(yè)版
- 小產(chǎn)權(quán)房買賣合同參考范本
- 農(nóng)村房屋繼承協(xié)議書樣式
- 工程委托設(shè)計合同示范
- 代征稅款委托協(xié)議樣本
- 合肥市建筑材料購銷合同
- 員工勞動合同范本規(guī)范文本
- 員工購房抵押貸款合同范本
- 彩色鋼板工程承包合同模板
- 2024年農(nóng)村土地買賣協(xié)議書范本
- 《“探界者”鐘揚(yáng) 》電子課件
- 部編初中歷史八年級上冊教案(全冊)
- GB∕T 33609-2017 軟質(zhì)泡沫聚合材料 滯后損失試驗方法
- 【人才評估】如何繪制人才畫像
- 中國歷史朝代歌(課堂PPT)
- 199管理類聯(lián)考綜合寫作答題紙完美版
- 二年級單腳起跳雙腳落地
- 三方戰(zhàn)略合作框架協(xié)議-中英文Co-operation-Agreement
- 三相異步電動機(jī)正反轉(zhuǎn)控制線路教學(xué)設(shè)計
- 旅行社派團(tuán)單
- 拼音aoe四聲(課堂PPT)
評論
0/150
提交評論