




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
上海市寶山區(qū)通河中學2023-2024學年高一下數(shù)學期末達標檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,,,則=()A. B.C. D.2.中國古代的“禮”“樂”“射”“御”“書”“數(shù)”合稱“六藝”.某校國學社團準備于周六上午9點分別在6個教室開展這六門課程講座,每位同學只能選擇一門課程,則甲乙兩人至少有人選擇“禮”的概率是()A. B. C. D.3.若,則()A.0 B.-1 C.1或0 D.0或-14.己知關(guān)于的不等式解集為,則突數(shù)的取值范圍為()A. B.C. D.5.是邊AB上的中點,記,,則向量()A. B.C. D.6.已知等差數(shù)列{}的前n項和為,且S8=92,a5=13,則a4=A.16 B.13 C.12 D.107.直線l:x+y﹣1=0與圓C:x2+y2=1交于兩點A、B,則弦AB的長度為()A.2 B. C.1 D.8.已知,是兩條不同的直線,,是兩個不同的平面,若,,則下列命題正確的是A.若,,則B.若,且,則C.若,,則D.若,且,則9.在的二面角內(nèi),放置一個半徑為3的球,該球切二面角的兩個半平面于A,B兩點,那么這兩個切點在球面上的最短距離為()A. B. C. D.10.在△ABC中,a=3,b=5,sinA=13A.15 B.59 C.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,,,點在線段上,若,則的面積是_____.12.已知數(shù)列滿足,若,則的所有可能值的和為______;13.如果,,則的值為________(用分數(shù)形式表示)14.設,且,則的取值范圍是______.15.方程在區(qū)間內(nèi)解的個數(shù)是________16.在中,角的對邊分別為,且面積為,則面積的最大值為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.從全校參加科技知識競賽初賽的學生試卷中,抽取一個樣本,考察競賽的成績分布.將樣本分成5組,繪成頻率分布直方圖(如圖),圖中從左到右各小組的小長方形的高之比是,最后一組的頻數(shù)是6.請結(jié)合頻率分布直方圖提供的信息,解答下列問題:(1)樣本的容量是多少?(2)求樣本中成績在分的學生人數(shù);(3)從樣本中成績在90.5分以上的同學中隨機地抽取2人參加決賽,求最高分甲被抽到的概率.18.已知中,角的對邊分別為.已知,.(Ⅰ)求角的大??;(Ⅱ)設點滿足,求線段長度的取值范圍.19.在中,分別為角所對應的邊,已知,,求的長度.20.在平面直角坐標系中,已知圓的方程為,過點的直線與圓交于兩點,.(1)若,求直線的方程;(2)若直線與軸交于點,設,,,R,求的值.21.已知函數(shù)f(x)=x2(1)寫出函數(shù)g(x)的解析式;(2)若直線y=ax+1與曲線y=g(x)有三個不同的交點,求a的取值范圍;(3)若直線y=ax+b與曲線y=f(x)在x∈[-2,1]內(nèi)有交點,求(a-1)2
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)正弦定理,代入即可求解.【詳解】因為中,,,由正弦定理可知代入可得故選:C【點睛】本題考查了正弦定理在解三角形中的應用,屬于基礎題.2、D【解析】
甲乙兩人至少有人選擇“禮”的對立事件是甲乙兩人都不選擇“禮”,求出后者的概率即可【詳解】由題意,甲和乙不選擇“禮”的概率是,且相互獨立所以甲乙兩人都不選擇“禮”的概率是所以甲乙兩人至少有人選擇“禮”的概率是故選:D【點睛】當遇到“至多”“至少”型題目時,一般用間接法求會比較簡單,即先求出此事件的對立事件的概率,然后即可得出原事件的概率.3、D【解析】
由二倍角公式可得,即,從而分情況求解.【詳解】易得,或.
由得.
由,得.故選:D【點睛】本題考查二倍角公式的應用以及有關(guān)的二次齊次式子求值,屬于中檔題.4、C【解析】
利用絕對值的幾何意義求解,即表示數(shù)軸上與和-2的距離之和,其最小值為.【詳解】∵,∴由解集為,得,解得.故選C.【點睛】本題考查絕對值不等式,考查絕對值的性質(zhì),解題時可按絕對值定義去絕對值符號后再求解,也可應用絕對值的幾何意義求解.不等式解集為,可轉(zhuǎn)化為的最小值不小于1,這是解題關(guān)鍵.5、C【解析】由題意得,∴.選C.6、D【解析】
利用等差數(shù)列前項和公式化簡已知條件,并用等差數(shù)列的性質(zhì)轉(zhuǎn)化為的形式,由此求得的值.【詳解】依題意,,解得,故選D.【點睛】本小題主要考查等差數(shù)列前項和公式,以及等差數(shù)列的性質(zhì),解答題目過程中要注意觀察已知條件的下標.屬于基礎題.7、B【解析】
利用直線和圓相交所得弦長公式,計算出弦長.【詳解】圓的圓心為,半徑為,圓心到直線的距離為,所以.故選:B【點睛】本小題主要考查直線和圓相交所得弦長的計算,屬于基礎題.8、D【解析】
利用面面、線面位置關(guān)系的判定和性質(zhì),直接判定.【詳解】解:對于A,若n∥α,m∥β,則α∥β或α與β相交,故錯;對于B,若α∩β=l,且m⊥l,則m與β不一定垂直,故錯;對于C,若m∥n,m∥β,則α與β位置關(guān)系不定,故錯;對于D,∵α∩β=l,∴l(xiāng)?β,∵m∥l,則m∥β,故正確.故選D.【點睛】本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間相互關(guān)系的合理運用.9、A【解析】
根據(jù)題意,作出截面圖,計算弧長即可.【詳解】根據(jù)題意,作出該球過球心且經(jīng)過A、B的截面圖如下所示:由題可知:則,故滿足題意的最短距離為弧長BA,在該弧所在的扇形中,弧長.故選:A.【點睛】本題考查弧長的計算公式,二面角的定義,屬綜合基礎題.10、B【解析】試題分析:由正弦定理得31考點:正弦定理的應用二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
過作于,設,運用勾股定理和三角形的面積公式,計算可得所求值.【詳解】過作于,設,,,,又,可得,即有,可得的面積為.故答案為.【點睛】本題考查解三角形,考查勾股定理的運用,以及三角形的面積公式,考查化簡運算能力,屬于基礎題.12、36【解析】
根據(jù)條件得到的遞推關(guān)系,從而判斷出的類型求解出可能的通項公式,即可計算出的所有可能值,并完成求和.【詳解】因為,所以或,當時,是等差數(shù)列,,所以;當時,是等比數(shù)列,,所以,所以的所有可能值之和為:.故答案為:.【點睛】本題考查等差和等比數(shù)列的判斷以及求數(shù)列中項的值,難度一般.已知數(shù)列滿足(為常數(shù)),則是公差為的等差數(shù)列;已知數(shù)列滿足,則是公比為的等比數(shù)列.13、【解析】
先求出,可得,再代值計算即可.【詳解】.故答案為:【點睛】本題考查了等差數(shù)列的前項和公式、累乘相消法,考查了學生的計算能力,屬于基礎題.14、【解析】
通過可求得x的取值范圍,接著利用反正弦函數(shù)的定義可得的取值范圍.【詳解】,,即.由反正弦函數(shù)的定義可得,即的取值范圍為.故答案為:.【點睛】本題主要考查余弦函數(shù)的定義域和值域,反正弦函數(shù)的定義,屬于基礎題.15、4.【解析】分析:通過二倍角公式化簡得到,進而推斷或,進而求得結(jié)果.詳解:,所以或,因為,所以或或或,故解的個數(shù)是4.點睛:該題考查的是有關(guān)方程解的個數(shù)問題,在解題的過程中,涉及到的知識點有正弦的倍角公式,方程的求解問題,注意一定不要兩邊除以,最后求得結(jié)果.16、【解析】
利用三角形面積構(gòu)造方程可求得,可知,從而得到;根據(jù)余弦定理,結(jié)合基本不等式可求得,代入三角形面積公式可求得最大值.【詳解】,由余弦定理得:(當且僅當時取等號)本題正確結(jié)果:【點睛】本題考查解三角形問題中的三角形面積的最值問題的求解;求解最值問題的關(guān)鍵是能夠通過余弦定理構(gòu)造等量關(guān)系,進而利用基本不等式求得邊長之積的最值,屬于常考題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)48;(2)30;(3)【解析】
(1)設樣本容量為,列方程求解即可;(2)根據(jù)比例列式求解即可;(3)根據(jù)比例得成績在90.5分以上的同學有6人,抽取2人參加決賽,列舉出總的基本事件個數(shù),然后列舉出最高分甲被抽到的基本事件個數(shù),根據(jù)概率公式可得結(jié)果.【詳解】解:(1)設樣本容量為,則,解得,所以樣本的容量是48;(2)樣本中成績在分的學生人數(shù)為:人;(3)樣本中成績在90.5分以上的同學有人,設這6名同學分別為,其中就是甲,從這6名同學中隨機地抽取2人參加決賽有:共15個基本事件,其中最高分甲被抽到的有共5個基本事件,則最高分甲被抽到的概率為.【點睛】本題考查頻率,頻數(shù),樣本容量間的關(guān)系,考查古典概型的概率公式,重點是列舉出總的基本事件和滿足題目要求的基本事件,是基礎題.18、(Ⅰ)(Ⅱ)【解析】
(I)利用數(shù)量積的定義和三角形面積公式可求得,從而得角;(II)由得,平方后可求得,即中線長,結(jié)合可得最小值,從而得取值范圍.【詳解】(Ⅰ)因為,所以因為,所以得以兩式相除得所以(Ⅱ)因為,所以因為,所以所以所以.當且僅當時取得等號所以線段長度的取值范圍時.【點睛】本題考查平面向量的數(shù)量積,考查平面向量的線性運算、三角形面積公式,解題關(guān)鍵是把中線向量表示為,這樣把線段長度(向量模)轉(zhuǎn)化為向量的數(shù)量積.19、或【解析】
由已知利用三角形的面積公式可得,可得或,然后分類討論利用余弦定理可求的值.【詳解】由題意得,即,或,又,當時,,可得,當時,,可得,故答案:或.【點睛】本題主要考查了三角形面積公式,余弦定理等知識解三角形,屬于基礎題.20、(1)(2)【解析】
(1)設斜率為,則直線的方程為,利用圓的弦長公式,列出方程求得的值,即可得到直線的方程;(2)當直線的斜率不存在時,根據(jù)向量的運算,求得,當直線的斜率存在時,設直線的方程為,聯(lián)立方程組,利用根與系數(shù)的關(guān)系,以及向量的運算,求得,得到答案.【詳解】(1)當直線的斜率不存在時,,不符合題意;當直線的斜率存在時,設斜率為,則直線的方程為,所以圓心到直線的距離,因為,所以,解得,所以直線的方程為..(2)當直線的斜率不存在時,不妨設,,,因為,,所以,,所以,,所以.當直線的斜率存在時,設斜率為,則直線的方程為:,因為直線與軸交于點,所以.直線與圓交于點,,設,,由得,,所以,;因為,,所以,,所以,,所以.綜上,.【點睛】本題主要考查了直線與圓的位置關(guān)系的應用,以及向量的坐標運算,其中解答中熟記圓的弦長公式,以及聯(lián)立方程組,合理利用根與系數(shù)的關(guān)系和向量的運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.21、(1)g(x)=0,-x2【解析】
(1)先分類討論求出|f(x)|的解析式,即得函數(shù)g(x)的解析式;(2)當a=0時,直線y=1與曲線y=g(x)只有2個交點,不符題意.當a≠0時,由題意得,直線y=ax+1與曲線y=g(x)在x?-2或x?1內(nèi)必有一個交點,且在-2<x<1的范圍內(nèi)有兩個交點.由y=ax+1,y=-x2-x+2,-2<x<1,消去y得x2+(a+1)x-1=0.令φ(x)=x2+(a+1)x-1,寫出a應滿足條件解得;(3)由方程組y=ax+b,y=x2+x-2,消去y得x2+(1-a)x-2-b=0.由題意知方程在[-2,1]內(nèi)至少有一個實根,設兩根為x【詳解】(1)當f(x)=x2+x-2≥0,得x≥1或x≤-2當f(x)=x2+x-2<0,得∴g(x)=(2)當a=0時,直線y=1與曲線y=g(x)只有2個交點,不符題意.當a≠0時,由題意得,直線y=a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023-2029年中國竹菜板行業(yè)市場全景評估及投資前景展望報告
- 半導體芯片建設項目可行性研究報告
- 2025-2030年中國減肥項目投資可行性研究分析報告
- 中國兒童服裝行業(yè)市場深度分析及投資策略研究報告
- 人力資源解決方案行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 兒童體能運動館創(chuàng)業(yè)計劃書
- 2025-2030年中國女士短款棉服行業(yè)深度研究分析報告
- 添加劑行業(yè)市場前景預測及投資價值評估分析報告
- 內(nèi)墻體布行業(yè)深度研究報告
- 鎮(zhèn)衛(wèi)生院改擴建及配套設施建設項目可行性研究報告
- 鄭州2025年河南鄭州市公安機關(guān)招聘輔警1200人筆試歷年參考題庫附帶答案詳解
- 2025年語文高考復習計劃解析
- 微電網(wǎng)運行與控制策略-深度研究
- 中職高教版(2023)語文職業(yè)模塊-第五單元:走近大國工匠(一)展示國家工程-了解工匠貢獻【課件】
- 物業(yè)管理車輛出入管理制度
- 家庭康復服務的商業(yè)價值與發(fā)展趨勢
- 2025年施工項目部《春節(jié)節(jié)后復工復產(chǎn)》工作實施方案 (3份)-75
- 礦山安全生產(chǎn)工作總結(jié)
- 小學教師培訓課件:做有品位的小學數(shù)學教師
- U8UAP開發(fā)手冊資料
- 監(jiān)護人考試20241208練習試題附答案
評論
0/150
提交評論