陜西省西安市第四十六中學2024年高一下數(shù)學期末教學質(zhì)量檢測試題含解析_第1頁
陜西省西安市第四十六中學2024年高一下數(shù)學期末教學質(zhì)量檢測試題含解析_第2頁
陜西省西安市第四十六中學2024年高一下數(shù)學期末教學質(zhì)量檢測試題含解析_第3頁
陜西省西安市第四十六中學2024年高一下數(shù)學期末教學質(zhì)量檢測試題含解析_第4頁
陜西省西安市第四十六中學2024年高一下數(shù)學期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

陜西省西安市第四十六中學2024年高一下數(shù)學期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一張方桌的圖案如圖所示,將一顆豆子隨機地扔到桌面上,假設(shè)豆子不落在線上,下列事件的概率:(1)豆子落在紅色區(qū)域概率為;(2)豆子落在黃色區(qū)域概率為;(3)豆子落在綠色區(qū)域概率為;(4)豆子落在紅色或綠色區(qū)域概率為;(5)豆子落在黃色或綠色區(qū)域概率為.其中正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個2.已知,,則的值域為()A. B.C. D.3.傾斜角為,在軸上的截距為的直線方程是A. B. C. D.4.若,且為第四象限角,則的值等于A. B. C. D.5.某協(xié)會有200名會員,現(xiàn)要從中抽取40名會員作樣本,采用系統(tǒng)抽樣法等間距抽取樣本,將全體會員隨機按1~200編號,并按編號順序平均分為40組(1-5號,6-10號,…,196-200號).若第5組抽出的號碼為22,則第1組至第3組抽出的號碼依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,126.在正方體中,分別是線段的中點,則下列判斷錯誤的是()A.與垂直 B.與垂直C.與平行 D.與平行7.在等差數(shù)列中,,則的值()A. B. C. D.8.某超市收銀臺排隊等候付款的人數(shù)及其相應概率如下:排隊人數(shù)01234概率0.10.160.30.30.10.04則至少有兩人排隊的概率為()A.0.16 B.0.26 C.0.56 D.0.749.集合,則()A. B. C. D.10.已知實數(shù)滿足且,則下列選項中不一定成立的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓Ω過點A(5,1),B(5,3),C(﹣1,1),則圓Ω的圓心到直線l:x﹣2y+1=0的距離為_____.12.若復數(shù)(為虛數(shù)單位),則的共軛復數(shù)________13.若,則滿足的的取值范圍為______________;14.在平面直角坐標系中,定義兩點之間的直角距離為:現(xiàn)有以下命題:①若是軸上的兩點,則;②已知,則為定值;③原點與直線上任意一點之間的直角距離的最小值為;④若表示兩點間的距離,那么.其中真命題是__________(寫出所有真命題的序號).15.已知函數(shù)的圖象關(guān)于點對稱,記在區(qū)間的最大值為,且在()上單調(diào)遞增,則實數(shù)的最小值是__________.16.從1,2,3,4,5中任意取出兩個不同的數(shù),其和為5的概率為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足.(1)若,證明:數(shù)列是等比數(shù)列,求的通項公式;(2)求的前項和.18.平面內(nèi)給定三個向量=(3,2),=(-1,2),=(4,1).(1)求滿足的實數(shù)m,n;(2)若,求實數(shù)k;19.在中,內(nèi)角、、所對的邊分別為、、,且.(1)求;(2)若,,求.20.如圖,四面體中,分別是的中點,,.(1)求證:平面;(2)求三棱錐的體積.21.已知都是第二象限的角,求的值。

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:方桌共有塊,其中紅色的由塊,黃色的由塊,,綠色的由塊,所以(1)(2)(3)結(jié)論正確,故選擇B.這里表面上看是與面積相關(guān)的幾何概型,其實還是古典概型考點:古典概型的概率計算和事件間的關(guān)系.2、C【解析】

根據(jù)正弦型函數(shù)的周期性可求得最小正周期,從而可知代入即可求得所有函數(shù)值.【詳解】由題意得,最小正周期:;;;;;且值域為:本題正確選項:【點睛】本題考查正弦型函數(shù)值域問題的求解,關(guān)鍵是能夠確定函數(shù)的最小正周期,從而計算出一個周期內(nèi)的函數(shù)值.3、D【解析】試題分析:傾斜角,直線方程截距式考點:斜截式直線方程點評:直線斜率為,在y軸上的截距為,則直線方程為,求直線方程最終結(jié)果整理為一般式方程4、D【解析】試題分析:∵為第四象限角,,∴,.故選D.考點:同角間的三角函數(shù)關(guān)系.【點評】同角三角函數(shù)的基本關(guān)系式揭示了同一個角三角函數(shù)間的相互關(guān)系,其主要應用于同角三角函數(shù)的求值和同角三角函數(shù)之間的化簡和證明.在應用這些關(guān)系式子的時候就要注意公式成立的前提是角對應的三角函數(shù)要有意義.5、B【解析】

根據(jù)系統(tǒng)抽樣原理求出抽樣間距,再根據(jù)第5組抽出的號碼求出第1組抽出的號碼,即可得出第2組、第3組抽取的號碼.【詳解】根據(jù)系統(tǒng)抽樣原理知,抽樣間距為200÷40=5,

當?shù)?組抽出的號碼為22時,即22=4×5+2,

所以第1組至第3組抽出的號碼依次是2,7,1.

故選:B.【點睛】本題考查了系統(tǒng)抽樣方法的應用問題,是基礎(chǔ)題.6、D【解析】

利用數(shù)形結(jié)合,逐一判斷,可得結(jié)果.【詳解】如圖由分別是線段的中點所以//A選項正確,因為,所以B選項正確,由,所以C選項正確D選項錯誤,由//,而與相交,所以可知,異面故選:D【點睛】本題主要考查空間中直線與直線的位置關(guān)系,屬基礎(chǔ)題.7、B【解析】

根據(jù)等差數(shù)列的性質(zhì),求得,再由,即可求解.【詳解】根據(jù)等差數(shù)列的性質(zhì),可得,即,則,故選B.【點睛】本題主要考查了等差數(shù)列的性質(zhì),以及特殊角的三角函數(shù)值的計算,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、D【解析】

利用互斥事件概率計算公式直接求解.【詳解】由某超市收銀臺排隊等候付款的人數(shù)及其相應概率表,得:至少有兩人排隊的概率為:.故選:D.【點睛】本題考查概率的求法、互斥事件概率計算公式,考查運算求解能力,是基礎(chǔ)題.9、C【解析】

先求解不等式化簡集合A和B,再根據(jù)集合的交集運算求得結(jié)果即可.【詳解】因為集合,集合或,所以.故本題正確答案為C.【點睛】本題考查一元二次不等式,分式不等式的解法和集合的交集運算,注意認真計算,仔細檢查,屬基礎(chǔ)題.10、D【解析】

由題設(shè)條件可以得到,從而可判斷A,B中的不等式都是正確的,再把題設(shè)變形后可得,從而C中的不等式也是成立的,當,D中的不等式不成立,而時,它又是成立的,故可得正確選項.【詳解】因為且,故,所以,故A正確;又,故,故B正確;而,故,故C正確;當時,,當時,有,故不一定成立,綜上,選D.【點睛】本題考查不等式的性質(zhì),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

求得線段和線段的垂直平分線,求這兩條垂直平分線的交點即求得圓的圓心,在求的圓心到直線的距離.【詳解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中點坐標為(5,2),則AB的垂直平分線方程為y=2;BC的中點坐標為(2,2),,則BC的垂直平分線方程為y﹣2=﹣3(x﹣2),即3x+y﹣8=1.聯(lián)立,得.∴圓Ω的圓心為Ω(2,2),則圓Ω的圓心到直線l:x﹣2y+1=1的距離為d.故答案為:【點睛】本小題主要考查根據(jù)圓上點的坐標求圓心坐標,考查點到直線的距離公式,屬于基礎(chǔ)題.12、【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,再由共軛復數(shù)的概念得答案.【詳解】由z=i(2﹣i)=1+2i,得.故答案為1﹣2i.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查共軛復數(shù)的基本概念,是基礎(chǔ)題.13、【解析】

本題首先可確定在區(qū)間上所對應的的值,然后可結(jié)合正弦函數(shù)圖像得出不等式的解集.【詳解】當時,令,解得或,如圖,繪出正弦函數(shù)圖像,結(jié)合函數(shù)圖像可知,當時,的解集為【點睛】本題考查三角函數(shù)不等式的解法,考查對正弦函數(shù)性質(zhì)的理解,考查計算能力,體現(xiàn)了基礎(chǔ)性,是簡單題.14、①②④【解析】

根據(jù)新定義的直角距離,結(jié)合具體選項,進行逐一分析即可.【詳解】對①:因為是軸上的兩點,故,則,①正確;對②:根據(jù)定義因為,故,②正確;對③:根據(jù)定義,當且僅當時,取得最小值,故③錯誤;對④:因為,由不等式,即可得,故④正確.綜上正確的有①②④故答案為:①②④.【點睛】本題考查新定義問題,涉及同角三角函數(shù)關(guān)系,絕對值三角不等式,屬綜合題.15、【解析】,所以,又,得,所以,且求得,又,得單調(diào)遞增區(qū)間為,由題意,當時,。點睛:本題考查三角函數(shù)的化簡及性質(zhì)應用。本題首先考查三角函數(shù)的輔助角公式應用,并結(jié)合對稱中心的性質(zhì),得到函數(shù)解析式。然后考察三角函數(shù)的單調(diào)性,利用整體思想求出單調(diào)區(qū)間,求得答案。16、0.2【解析】從1,2,3,4,5中任意取兩個不同的數(shù)共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)10種.其中和為5的有(1,4),(2,3)2種.由古典概型概率公式知所求概率為=.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2).【解析】

(1)由條件可得,即,運用等比數(shù)列的定義,即可得到結(jié)論;運用等比數(shù)列的通項公式可得所求通項。(2)數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,可得所求的和?!驹斀狻拷猓海?)證明:由,得,又,,又,所以是首相為1,公比為2的等比數(shù)列;,。(2)前項和,,兩式相減可得:化簡可得【點睛】本題考查利用輔助數(shù)列求通項公式,以及錯位相減求和,考查學生的計算能力,是一道基礎(chǔ)題。18、(1);(2).【解析】

(1)由及已知得,由此列方程組能求出實數(shù);(2)由,可得,由此能求出的值.【詳解】(1)由題意得(3,2)=m(-1,2)+n(4,1),所以,解得;(2)∵a+kc=(3+4k,2+k),2b-a=(-5,2),∴2×(3+4k)-(-5)×(2+k)=0.∴k=.【點睛】本題主要考查相等向量與共線向量的性質(zhì),屬于簡單題.利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.19、(1)(2)【解析】

(1)利用正弦定理化簡為,再利用余弦定理得到答案.(2)先用和差公式計算,再利用正弦定理得到.【詳解】(1)由正弦定理,可化為,得,由余弦定理可得,有又由,可得.(2)由,由正弦定理有.【點睛】本題考查了正弦定理,余弦定理,和差公式,意在考查學生的計算能力.20、(1)見解析;(2)【解析】

(1)連接,由等腰三角形三線合一,可得,,再勾股定理可得,進而根據(jù)線面垂直的判定定理得到平面;(2)根據(jù)等積法可得,結(jié)合(1)中結(jié)論,可得即為棱錐的高,代入棱錐的體積公式,可得答案.【詳解】證明:(1)連接.,,.,為中點,,,為中點,,,在中,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論