內(nèi)蒙古包頭六中2025屆高一下數(shù)學(xué)期末綜合測試模擬試題含解析_第1頁
內(nèi)蒙古包頭六中2025屆高一下數(shù)學(xué)期末綜合測試模擬試題含解析_第2頁
內(nèi)蒙古包頭六中2025屆高一下數(shù)學(xué)期末綜合測試模擬試題含解析_第3頁
內(nèi)蒙古包頭六中2025屆高一下數(shù)學(xué)期末綜合測試模擬試題含解析_第4頁
內(nèi)蒙古包頭六中2025屆高一下數(shù)學(xué)期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古包頭六中2025屆高一下數(shù)學(xué)期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓C1:x2+y2+4y+3=0,圓C2:x2+A.210-3 B.210+32.設(shè),,則的值可表示為()A. B. C. D.3.若數(shù)列{an}前8項的值各異,且an+8=an對任意n∈N*都成立,則下列數(shù)列中可取遍{an}前8項值的數(shù)列為()A.{a2k+1} B.{a3k+1} C.{a4k+1} D.{a6k+1}4.某幾何體三視圖如圖所示,則該幾何體的體積為()A. B. C. D.5.函數(shù),則命題正確的()A.是周期為1的奇函數(shù) B.是周期為2的偶函數(shù)C.是周期為1的非奇非偶函數(shù) D.是周期為2的非奇非偶函數(shù)6.已知圓柱的側(cè)面展開圖是一個邊長為的正方形,則這個圓柱的體積是()A. B. C. D.7.在中,角的對邊分別為,若,則的最小值是()A.5 B.8 C.7 D.68.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞減的是(

)A. B. C. D.9.已知,則()A. B. C. D.10.在中,已知角的對邊分別為,若,,,,且,則的最小角的正切值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.圓錐的底面半徑是3,高是4,則圓錐的側(cè)面積是__________.12.若函數(shù),則__________.13.已知等差數(shù)列中,,則_______14.把二進制數(shù)1111(2)化為十進制數(shù)是______.15.已知點,,若直線與線段有公共點,則實數(shù)的取值范圍是____________.16.已知為第二象限角,且,則_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在銳角中,角,,所對的邊分別為,,,且.(1)求;(2)若的面積為8,,求的值.18.如圖,在四棱錐中,底面,底面為矩形,為的中點,且,,.(1)求證:平面;(2)若點為線段上一點,且,求四棱錐的體積.19.已知數(shù)列的前項和為,滿足,數(shù)列滿足.(1)求數(shù)列、的通項公式;(2),求數(shù)列的前項和;(3)對任意的正整數(shù),是否存在正整數(shù),使得?若存在,請求出的所有值;若不存在,請說明理由.20.如圖,在三棱錐中,,分別為,的中點,且.(1)證明:平面;(2)若平面平面,證明:.21.如圖,長方形材料中,已知,.點為材料內(nèi)部一點,于,于,且,.現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點、分別在邊,上.(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;(2)試確定點在上的位置,使得四邊形材料的面積最小,并求出其最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

求出圓C1,C2的圓心坐標(biāo)和半徑,作出圓C1關(guān)于直線l的對稱圓C1',連結(jié)C1'C2,則C1'C2與直線l的交點即為P點,此時M點為P【詳解】由圓C1:x可知圓C1圓心為0,-2圓C2圓心為3,-1圓C1關(guān)于直線l:y=x+1的對稱圓為圓C連結(jié)C1'C2,交l于P,則此時M點為PC1'與圓C1'的交點關(guān)于直線l對稱的點,N最小值為C1而C1∴PM+PN【點睛】本題考查了圓方程的綜合應(yīng)用,考查了利用對稱關(guān)系求曲線上兩點間的最小距離,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.解決解析幾何中的最值問題一般有兩種方法:一是幾何意義,特別是用曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.2、A【解析】

由,可得到,然后根據(jù)反余弦函數(shù)的圖象與性質(zhì)即可得到答案.【詳解】因為,所以,則.故選:A【點睛】本題主要考查反余弦函數(shù)的運用,熟練掌握反余弦函數(shù)的概念及性質(zhì)是解決本題的關(guān)鍵.3、B【解析】

數(shù)列是周期為8的數(shù)列;,;故選B4、B【解析】試題分析:該幾何體是正方體在兩個角各挖去四分之一個圓柱,因此.故選B.考點:三視圖,體積.5、B【解析】由題得函數(shù)的周期為T==2,又f(x)=sin(πx?)?1=?cosπx?1,從而得出函數(shù)f(x)為偶函數(shù).故本題正確答案為B.6、A【解析】

由已知易得圓柱的高為,底面圓周長為,求出半徑進而求得底面圓半徑即可求出圓柱體積。【詳解】底面圓周長,,所以故選:A【點睛】此題考查圓柱的側(cè)面展開為長方形,長為底面圓周長,寬為圓柱高,屬于簡單題目。7、D【解析】

先化簡條件中的等式,利用余弦定理整理得到等式,然后根據(jù)等式利用基本不等式求解最小值.【詳解】由,得,化簡整理得,,即,當(dāng)且僅當(dāng),即時,取等號.故選D.【點睛】本題考查正、余弦定理在邊角化簡中的應(yīng)用,難度一般.對于利用基本不等求最值的時候,一定要注意取到等號的條件.8、D【解析】

利用函數(shù)的奇偶性和單調(diào)性,逐一判斷各個選項中的函數(shù)的奇偶性和單調(diào)性,進而得出結(jié)論.【詳解】由于函數(shù)是奇函數(shù),不是偶函數(shù),故排除A;由于函數(shù)是偶函數(shù),但它在區(qū)間上單調(diào)遞增,故排除B;由于函數(shù)是奇函數(shù),不是偶函數(shù),故排除C;由于函數(shù)是偶函數(shù),且滿足在區(qū)間上單調(diào)遞減,故滿足條件.故答案為:D【點睛】本題主要考查了函數(shù)的奇偶性的判定及應(yīng)用,其中解答中熟記函數(shù)的奇偶性的定義和判定方法,以及基本初等函數(shù)的奇偶性是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.9、C【解析】

利用誘導(dǎo)公式和同角三角函數(shù)的商數(shù)關(guān)系,得,再利用化弦為切的方法,即可求得答案.【詳解】由已知則故選C.【點睛】本題考查利用三角函數(shù)的誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系化簡求值,屬于三角函數(shù)求值問題中的“給值求值”問題,解題的關(guān)鍵是正確掌握誘導(dǎo)公式中符號與函數(shù)名稱的變換規(guī)律和化弦為切方法.10、D【解析】

根據(jù)大角對大邊判斷最小角為,利用正弦定理得到,代入余弦定理計算得到,最后得到.【詳解】根據(jù)大角對大邊判斷最小角為根據(jù)正弦定理知:根據(jù)余弦定理:化簡得:故答案選D【點睛】本題考查了正弦定理,余弦定理,意在考查學(xué)生的計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:由已知中圓錐的底面半徑是,高是,由勾股定理,我們可以計算出圓錐的母線長,代入圓錐側(cè)面積公式,即可得到結(jié)論.詳解:圓錐的底面半徑是,高是,圓錐的母線長,則圓錐側(cè)面積公式,故答案為.點睛:本題主要考查圓錐的性質(zhì)與圓錐側(cè)面積公式,意在考查對基本公式的掌握與理解,屬于簡單題.12、【解析】

根據(jù)分段函數(shù)的解析式先求,再求即可.【詳解】因為,所以.【點睛】本題主要考查了分段函數(shù)求值問題,解題的關(guān)鍵是將自變量代入相應(yīng)范圍的解析式中,屬于基礎(chǔ)題.13、【解析】

設(shè)等差數(shù)列的公差為,用與表示等式,再用與表示代數(shù)式可得出答案。【詳解】設(shè)等差數(shù)列的公差為,則,因此,,故答案為:?!军c睛】本題考查等差數(shù)列中項的計算,解決等差數(shù)列有兩種方法:基本性質(zhì)法(與下標(biāo)相關(guān)的性質(zhì))以及基本量法(用首項和公差來表示相應(yīng)的量),一般利用基本量法來進行計算,此外,靈活利用與下標(biāo)有關(guān)的基本性質(zhì)進行求解,能簡化計算,屬于中等題。14、.【解析】

由二進制數(shù)的定義可將化為十進制數(shù).【詳解】由二進制數(shù)的定義可得,故答案為:.【點睛】本題考查二進制數(shù)化十進制數(shù),考查二進制數(shù)的定義,考查計算能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)直線方程可確定直線過定點;求出有公共點的臨界狀態(tài)時的斜率,即和;根據(jù)位置關(guān)系可確定的范圍.【詳解】直線可整理為:直線經(jīng)過定點,又直線的斜率為的取值范圍為:本題正確結(jié)果:【點睛】本題考查根據(jù)直線與線段的交點個數(shù)求解參數(shù)范圍的問題,關(guān)鍵是能夠明確直線經(jīng)過的定點,從而確定臨界狀態(tài)時的斜率.16、.【解析】

先由求出的值,再利用同角三角函數(shù)的基本關(guān)系式求出、即可.【詳解】因為為第二象限角,且,所以,解得,再由及為第二象限角可得、,此時.故答案為:.【點睛】本題主要考查兩角差的正切公式及同角三角函數(shù)的基本關(guān)系式的應(yīng)用,屬常規(guī)考題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用正弦定理,將csinA=acosC轉(zhuǎn)化為,可得,從而可得角C的大?。?2)利用面積公式直接求解b即可【詳解】(1)由正弦定理得,因為所以sinA>0,從而,即,又,所以;(2)由得b=8【點睛】本題考查三角函數(shù)中的恒等變換應(yīng)用,考查正弦定理的應(yīng)用,面積公式的應(yīng)用,考查化歸思想屬于中檔題.18、(1)見解析(2)6【解析】

(1)連接交于點,得出點為的中點,利用中位線的性質(zhì)得出,再利用直線與平面平行的判定定理可得出平面;(2)過作交于,由平面,得出平面,可而出,結(jié)合,可證明出平面,可得出,并計算出,利用平行線的性質(zhì)求出的長,再利用錐體的體積公式可計算出四棱錐的體積.【詳解】(1)連接交于,連接.四邊形為矩形,∴為中點.又為中點,∴.又平面,平面,∴平面;(2)過作交于.∵平面,∴平面.又平面,∴.∵,,,平面,∴平面.連接,則,又是矩形,易證,而,,得,由得,∴.又矩形的面積為8,∴.【點睛】本題考查直線與平面平行的證明,以及錐體體積的計算,直線與平面平行的證明,常用以下三種方法進行證明:(1)中位線平行;(2)平行四邊形對邊平行;(3)構(gòu)造面面平行來證明線面平行.一般遇到中點找中點,根據(jù)已知條件類型選擇合適的方法證明.19、(1),;(2)見解析;(3)存在,.【解析】

(1)利用可得,從而可得為等比數(shù)列,故可得其通項公式.用累加法可求的通項.(2)利用分組求和法可求,注意就的奇偶性分類討論.(3)根據(jù)的通項可得,故考慮的解可得滿足條件的的值.【詳解】(1)在數(shù)列中,當(dāng)時,.當(dāng)時,由得,因為,故,所以數(shù)列是以為首項,為公比的等比數(shù)列即.在數(shù)列中,當(dāng)時,有,由累加法得,,.當(dāng)時,也符合上式,所以.(2).當(dāng)為偶數(shù)時,=;當(dāng)為奇數(shù)時,=.(3)對任意的正整數(shù),有,假設(shè)存在正整數(shù),使得,則,令,解得,又為正整數(shù),所以滿足題意.【點睛】給定數(shù)列的遞推關(guān)系,求數(shù)列的通項時,我們常需要對遞推關(guān)系做變形構(gòu)建新數(shù)列(新數(shù)列的通項容易求得),常見的遞推關(guān)系、變形方法及求法如下:(1),用累加法;(2),可變形為,利用等比數(shù)列的通項公式可求的通項公式,兩種方法都可以得到的通項公式.(3)遞推關(guān)系式中有與前項和,可利用實現(xiàn)與之間的相互轉(zhuǎn)化.另外,數(shù)列不等式恒成立與有解問題,可轉(zhuǎn)化為數(shù)列的最值(或項的范圍)來處理.20、(1)見解析(2)見解析【解析】

(1)先證明,再證明平面;(2)先證明平面,再證明.【詳解】證明:(1)因為,分別為,的中點,所以.又平面,平面,所以平面.(2)因為,為中點,所以.又平面平面.平面平面,所以平面.又平面,所以.【點睛】本題主要考查空間幾何元素位置關(guān)系的證明,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.21、(1)見解析;(2)當(dāng)時,四邊形材料的面積最小,最小值為.【解析】分析:(1)通過直角三角形的邊角關(guān)系,得出和,進而得出四邊形材料的面積的表達(dá)式,再結(jié)合已知尺寸條件,確定角的范圍.(2)根據(jù)正切的兩角差公式和換元法,化簡和整理函數(shù)表達(dá)式,最后由基本不等式,確定面積最小值及對應(yīng)的點在上的位置.詳解:解:(1)在直角中,因為,,所以,所以,在直角中,因為,,所以,所以,所以,.(2)因為,令,由,得,所以,當(dāng)且僅當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論