版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆湖南省湘東六校高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,在中,,是邊上的高,平面,則圖中直角三角形的個數(shù)是()A. B. C. D.2.若、為異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交3.如圖,網(wǎng)格紙的小正方形的邊長是,在其上用粗實(shí)線和粗虛線畫出了某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.4.為了了解運(yùn)動員對志愿者服務(wù)質(zhì)量的意見,打算從1200名運(yùn)動員中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段間隔為A.40 B.20 C.30 D.125.已知正三角形ABC邊長為2,D是BC的中點(diǎn),點(diǎn)E滿足,則()A. B. C. D.-16.已知點(diǎn)在直線上,若存在滿足該條件的使得不等式成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.以下說法正確的是()A.零向量與單位向量的模相等B.模相等的向量是相等向量C.已知均為單位向量,若,則與的夾角為D.向量與向量是共線向量,則四點(diǎn)在一條直線上8.若,A點(diǎn)的坐標(biāo)為,則B點(diǎn)的坐標(biāo)為()A. B. C. D.9.函數(shù)y=tan(–2x)的定義域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}10.已知,則下列不等式成立的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知方程的四個根組成一個首項(xiàng)為的等差數(shù)列,則_____.12.的內(nèi)角的對邊分別為,若,,,則的面積為__________.13.已知等差數(shù)列的公差為,且,其前項(xiàng)和為,若滿足,,成等比數(shù)列,且,則______,______.14.若,,則__________.15.一條河的兩岸平行,河的寬度為560m,一艘船從一岸出發(fā)到河對岸,已知船的靜水速度,水流速度,則行駛航程最短時,所用時間是__________(精確到).16.已知無窮等比數(shù)列的所有項(xiàng)的和為,則首項(xiàng)的取值范圍為_____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)是等差數(shù)列,且.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)求.18.在數(shù)列中,,.(1)分別計算,,的值;(2)由(1)猜想出數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.19.某校高二年級共有800名學(xué)生參加2019年全國高中數(shù)學(xué)聯(lián)賽江蘇賽區(qū)初賽,為了解學(xué)生成績,現(xiàn)隨機(jī)抽取40名學(xué)生的成績(單位:分),并列成如下表所示的頻數(shù)分布表:分組頻數(shù)⑴試估計該年級成績不低于90分的學(xué)生人數(shù);⑵成績在的5名學(xué)生中有3名男生,2名女生,現(xiàn)從中選出2名學(xué)生參加訪談,求恰好選中一名男生一名女生的概率.20.解關(guān)于x的不等式21.如圖,在三棱柱中,是邊長為4的正三角形,側(cè)面是矩形,分別是線段的中點(diǎn).(1)求證:平面;(2)若平面平面,,求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
根據(jù)線面垂直得出一些相交直線垂直,以及找出題中一些已知的相交直線垂直,由這些條件找出圖中的直角三角形.【詳解】①平面,,都是直角三角形;②是直角三角形;③是直角三角形;④由得平面,可知:也是直角三角形.綜上可知:直角三角形的個數(shù)是個,故選C.【點(diǎn)睛】本題考查直角三角形個數(shù)的確定,考查相交直線垂直,解題時可以充分利用直線與平面垂直的性質(zhì)得到,考查推理能力,屬于中等題.2、D【解析】解:因?yàn)闉楫惷嬷本€,直線,則與的位置關(guān)系是異面或相交,選D3、A【解析】
根據(jù)三視圖,還原空間結(jié)構(gòu)體,根據(jù)空間結(jié)構(gòu)體的特征及球、棱錐的體積公式求得總體積.【詳解】根據(jù)空間結(jié)構(gòu)體的三視圖,得原空間結(jié)構(gòu)體如下圖所示:該幾何體是由下面半球的和上面四棱錐的組成由三視圖的棱長及半徑關(guān)系,可得幾何體的體積為所以選A【點(diǎn)睛】本題考查了三視圖的簡單應(yīng)用,空間結(jié)構(gòu)體的體積求法,屬于中檔題.4、C【解析】
根據(jù)系統(tǒng)抽樣的定義和方法,結(jié)合題意可分段的間隔等于個體總數(shù)除以樣本容量,即可求解.【詳解】根據(jù)系統(tǒng)抽樣的定義和方法,結(jié)合題意可分段的間隔,故選C.【點(diǎn)睛】本題主要考查了系統(tǒng)抽樣的定義和方法,其中解答中熟記系統(tǒng)抽樣的定義和方法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、C【解析】
化簡,分別計算,,代入得到答案.【詳解】正三角形ABC邊長為2,D是BC的中點(diǎn),點(diǎn)E滿足故答案選C【點(diǎn)睛】本題考查了向量的計算,將是解題的關(guān)鍵,也可以建立直角坐標(biāo)系解得答案.6、B【解析】
根據(jù)題干得到,存在滿足該條件的使得不等式成立,即,再根據(jù)均值不等式得到最小值為9,再由二次不等式的解法得到結(jié)果.【詳解】點(diǎn)在直線上,故得到,存在滿足該條件的使得不等式成立,即故原題轉(zhuǎn)化為故答案為:B【點(diǎn)睛】本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.解決二元的范圍或者最值問題,常用的方法有:不等式的應(yīng)用,二元化一元的應(yīng)用,線性規(guī)劃的應(yīng)用,等.7、C【解析】
根據(jù)零向量、單位向量、相等向量,向量的模、向量共線、向量數(shù)量積的運(yùn)算的知識分析選項(xiàng),由此確定正確選項(xiàng).【詳解】對于A選項(xiàng),零向量的模是,單位向量的模是,兩者不相等,故A選項(xiàng)說法錯誤.對于B選項(xiàng),兩個向量大小和方向都相等才是相等向量,故B選項(xiàng)說法錯誤.對于C選項(xiàng),由,故C選項(xiàng)說法正確.對于D選項(xiàng),向量與向量是共線向量,但是這兩個向量沒有公共點(diǎn),所以無法判斷是否在一條直線上.故D選項(xiàng)說法錯誤.故選:C【點(diǎn)睛】本小題主要考查向量的有關(guān)概念,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.8、A【解析】
根據(jù)向量坐標(biāo)的求解公式可求.【詳解】設(shè),因?yàn)锳點(diǎn)的坐標(biāo)為,所以.所以,即.故選:A.【點(diǎn)睛】本題主要考查平面向量坐標(biāo)的運(yùn)算,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).9、A【解析】
根據(jù)誘導(dǎo)公式化簡解析式,由正切函數(shù)的定義域求出此函數(shù)的定義域.【詳解】由題意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函數(shù)的定義域是{x|x≠+,k∈Z},故選:A.【點(diǎn)睛】本題考查正切函數(shù)的定義域,以及誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.10、B【解析】
利用不等式的基本性質(zhì)即可得出結(jié)果.【詳解】因?yàn)椋?,所以,故選B【點(diǎn)睛】本題主要考查不等式的基本性質(zhì),屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
把方程(x2﹣2x+m)(x2﹣2x+n)=0化為x2﹣2x+m=0,或x2﹣2x+n=0,設(shè)是第一個方程的根,代入方程即可求得m,則方程的另一個根可求;設(shè)另一個方程的根為s,t,(s≤t)根據(jù)韋達(dá)定理可知∴s+t=2根據(jù)等差中項(xiàng)的性質(zhì)可知四個跟成的等差數(shù)列為,s,t,,進(jìn)而根據(jù)數(shù)列的第一項(xiàng)和第四項(xiàng)求得公差,則s和t可求,進(jìn)而根據(jù)韋達(dá)定理求得n,最后代入|m﹣n|即可.【詳解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化為x2﹣2x+m=0①,或x2﹣2x+n=0②,設(shè)是方程①的根,則將代入方程①,可解得m,∴方程①的另一個根為.設(shè)方程②的另一個根為s,t,(s≤t)則由根與系數(shù)的關(guān)系知,s+t=2,st=n,又方程①的兩根之和也是2,∴s+t由等差數(shù)列中的項(xiàng)的性質(zhì)可知,此等差數(shù)列為,s,t,,公差為[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案為【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì).考查了學(xué)生創(chuàng)造性思維和解決問題的能力.12、【解析】
由已知及正弦定理可得:,進(jìn)而利用余弦定理即可求得a的值,進(jìn)而可求c,利用三角形的面積公式即可求解.【詳解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案為:.【點(diǎn)睛】本題注意考查余弦定理與正弦定理的應(yīng)用,屬于中檔題.正弦定理主要有三種應(yīng)用:求邊和角、邊角互化、外接圓半徑.13、2【解析】
由,可求出,再由,,成等比數(shù)列,可建立關(guān)系式,求出,進(jìn)而求出即可.【詳解】由,可知,即,又,,成等比數(shù)列,所以,則,即,解得或,因?yàn)?,所以,,所?故答案為:2;.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列前項(xiàng)和的求法,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.14、【解析】
由等比數(shù)列前n項(xiàng)公式求出已知等式左邊的和,再求解.【詳解】易知不合題意,∴,若,則,不合題意,∴,,∴,,又,∴.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的前n項(xiàng)和公式,解題時需分類討論,首先對的情形進(jìn)行說明,然后按是否為1分類.15、6【解析】
先確定船的方向,再求出船的速度和時間.【詳解】因?yàn)樾谐套疃?,所以船?yīng)該朝上游的方向行駛,所以船的速度為km/h,所以所用時間是.故答案為6【點(diǎn)睛】本題主要考查平面向量的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.16、【解析】
設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,根據(jù)無窮等比數(shù)列的和得出與所滿足的關(guān)系式,由此可求出實(shí)數(shù)的取值范圍.【詳解】設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,由于無窮等比數(shù)列的所有項(xiàng)的和為,則,.當(dāng)時,則,此時,;當(dāng)時,則,此時,.因此,首項(xiàng)的取值范圍是.故答案為:.【點(diǎn)睛】本題考查利用無窮等比數(shù)列的和求首項(xiàng)的取值范圍,解題的關(guān)鍵就是結(jié)合題意得出首項(xiàng)和公比的關(guān)系式,利用不等式的性質(zhì)或函數(shù)的單調(diào)性來求解,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(I);(II).【解析】
(I)設(shè)公差為,根據(jù)題意可列關(guān)于的方程組,求解,代入通項(xiàng)公式可得;(II)由(I)可得,進(jìn)而可利用等比數(shù)列求和公式進(jìn)行求解.【詳解】(I)設(shè)等差數(shù)列的公差為,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2為首項(xiàng),2為公比的等比數(shù)列.∴.∴點(diǎn)睛:等差數(shù)列的通項(xiàng)公式及前項(xiàng)和共涉及五個基本量,知道其中三個可求另外兩個,體現(xiàn)了用方程組解決問題的思想.18、(1),;
(2),證明見解析【解析】
(1)分別令即可運(yùn)算得出,,的值;(2)由(1)可猜想出,當(dāng)時成立,再假設(shè)當(dāng)時,成立,再利用推導(dǎo)出即可.【詳解】(1)令有;
令有;
令有所以,,(2)由(1)可得,,,,故可猜想.證明:當(dāng)時,成立;假設(shè)當(dāng)時,成立,且即當(dāng)時,,即,化簡得,,即也滿足,當(dāng)時成立,故對于任意的,有,證畢.所以.【點(diǎn)睛】本題主要考查了數(shù)學(xué)歸納法的運(yùn)用,其中步驟為:(1)證明當(dāng)取第一個值時命題成立.對于一般數(shù)列取值為0或1;(2)假設(shè)當(dāng)()且為自然數(shù))時命題成立,證明當(dāng)時命題也成立.
綜合(1)(2),對一切自然數(shù),命題都成立.19、(1)300人;(2)【解析】
(1)由頻數(shù)分布表可得40人中成績不低于90分的學(xué)生人數(shù)為15人,由此可計算出該年級成績不低于90分的學(xué)生人數(shù);(2)根據(jù)題意寫出所有的基本事件,確定基本事件的個數(shù),即可計算出恰好選中一名男生一名女生的概率.【詳解】⑴40名學(xué)生中成績不低于90分的學(xué)生人數(shù)為15人;所以估計該年級成績不低于90分的學(xué)生人數(shù)為⑵分別記男生為1,2,3號,女生為4,5號,從中選出2名學(xué)生,有如下基本事件(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)因此,共有10個基本事件,上述10個基本事件發(fā)生的可能性相同,且只有6個基本事件是選中一名男生一名女生(記為事件),即(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)∴【點(diǎn)睛】本題考查頻率分布表以及古典概型的概率計算,,考查學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.20、見解析.【解析】試題分析:(1)討論的取值,分為,兩種情形,求出對應(yīng)不等式的解集即可.試題解析:當(dāng)a=0時,原不等式化為x+10,解得;當(dāng)時,原不等式化為,解得;綜上所述,當(dāng)a=0時,不等式的解集為,當(dāng)時,不等式的解集為.點(diǎn)睛:本題考查了含有字母系數(shù)的不等式的解法與應(yīng)用問題,元二次不等式的核心還是求一元
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林藝術(shù)學(xué)院《新材料設(shè)計與應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《美術(shù)鑒賞》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《構(gòu)圖原理》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年公租房代理退租協(xié)議書模板
- 吉林師范大學(xué)《油畫頭像技法解析》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林師范大學(xué)《小組工作》2021-2022學(xué)年第一學(xué)期期末試卷
- 2022年公務(wù)員多省聯(lián)考《申論》真題(陜西A卷)及答案解析
- 合拍三人合伙協(xié)議書范文范本
- 舞蹈培訓(xùn)班承包協(xié)議書范文范本
- 吉林師范大學(xué)《數(shù)字圖像技術(shù)》2021-2022學(xué)年期末試卷
- 2024年10月時政100題(附答案)
- 學(xué)生校外托管協(xié)議書
- 建筑幕墻施工方案
- 第二章 地圖(考點(diǎn)串講課件)七年級地理上學(xué)期期中考點(diǎn)大串講(人教版2024)
- 【9道期中】安徽省黃山地區(qū)2023-2024學(xué)年九年級上學(xué)期期中考試道德與法治試題(含詳解)
- 2024年健身房管理制度(六篇)
- 期中測試卷(1-4單元)(試題)-2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊
- 車輛綠本抵押借款合同
- 意識形態(tài)分析研判制度
- GB/T 18029.6-2024輪椅車第6 部分:電動輪椅車最大速度的測定
- 2024至2030年中國學(xué)前教育(幼兒園)行業(yè)研究報告
評論
0/150
提交評論