![江蘇省南通市西亭高級中學2024年高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第1頁](http://file4.renrendoc.com/view2/M01/19/00/wKhkFmZhTuSAb_vUAAJPHgZdGw4105.jpg)
![江蘇省南通市西亭高級中學2024年高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第2頁](http://file4.renrendoc.com/view2/M01/19/00/wKhkFmZhTuSAb_vUAAJPHgZdGw41052.jpg)
![江蘇省南通市西亭高級中學2024年高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第3頁](http://file4.renrendoc.com/view2/M01/19/00/wKhkFmZhTuSAb_vUAAJPHgZdGw41053.jpg)
![江蘇省南通市西亭高級中學2024年高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第4頁](http://file4.renrendoc.com/view2/M01/19/00/wKhkFmZhTuSAb_vUAAJPHgZdGw41054.jpg)
![江蘇省南通市西亭高級中學2024年高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第5頁](http://file4.renrendoc.com/view2/M01/19/00/wKhkFmZhTuSAb_vUAAJPHgZdGw41055.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
江蘇省南通市西亭高級中學2024年高一數(shù)學第二學期期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列和數(shù)列都是無窮數(shù)列,若區(qū)間滿足下列條件:①;②;則稱數(shù)列和數(shù)列可構(gòu)成“區(qū)間套”,則下列可以構(gòu)成“區(qū)間套”的數(shù)列是()A., B.,C., D.,2.在四邊形中,,且·=0,則四邊形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形3.半圓的直徑,為圓心,是半圓上不同于的任意一點,若為半徑上的動點,則的最小值是()A.2 B.0 C.-2 D.44.公差不為零的等差數(shù)列的前項和為.若是的等比中項,,則等于()A.18 B.24 C.60 D.905.若a<b,則下列不等式中正確的是()A.a(chǎn)2<b2 B. C.a(chǎn)2+b2>2ab D.a(chǎn)c2<bc26.設集合,,若存在實數(shù)t,使得,則實數(shù)的取值范圍是()A. B. C. D.7.七巧板是我國古代勞動人民發(fā)明的一種智力玩具,由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自黑色部分的概率為()A. B. C. D.8.不等式組所表示的平面區(qū)域的面積為()A.1 B. C. D.9.已知為等比數(shù)列的前項和,,,則A. B. C. D.1110.已知等差數(shù)列的前項和為,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線l在y軸上的截距為1,且垂直于直線,則的方程是____________.12.數(shù)列滿足,(且),則數(shù)列的通項公式為________.13.在△ABC中,a、b、c分別為角A、B、C的對邊,若b·cosC=c·cosB,且cosA=,則cosB的值為_____.14.如圖,點為正方形邊上異于點的動點,將沿翻折成,使得平面平面,則下列說法中正確的是__________.(填序號)(1)在平面內(nèi)存在直線與平行;(2)在平面內(nèi)存在直線與垂直(3)存在點使得直線平面(4)平面內(nèi)存在直線與平面平行.(5)存在點使得直線平面15.在區(qū)間上,與角終邊相同的角為__________.16.如圖,將一個長方體用過相鄰三條棱的中點的平面截出一個棱錐,則該棱錐的體積與剩下的幾何體體積的比為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時測得公路北側(cè)遠處一山頂D在西偏北的方向上,仰角為,行駛4km后到達B處,測得此山頂在西偏北的方向上.(1)求此山的高度(單位:km);(2)設汽車行駛過程中仰望山頂D的最大仰角為,求.18.如圖,四棱錐中,是正三角形,四邊形ABCD是矩形,且平面平面.(1)若點E是PC的中點,求證:平面BDE;(2)若點F在線段PA上,且,當三棱錐的體積為時,求實數(shù)的值.19.已知等差數(shù)列滿足:,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和為.20.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;(2)求函數(shù)在區(qū)間上的最小值以及取得該最小值時的值.21.在數(shù)列中,,,且滿足,.(1)求數(shù)列的通項公式;(2)設,,求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
直接利用已知條件,判斷選項是否滿足兩個條件即可.【詳解】由題意,對于A:,,∵,∴不成立,所以A不正確;對于B:由,,得不成立,所以B不正確;對于C:,∵,∴成立,并且也成立,所以C正確;對于D:由,,得,∴不成立,所以D不正確;故選:C.【點睛】本題考查新定義的理解和運用,考查數(shù)列的極限的求法,考查分析問題解決問題的能力及運算能力,屬于中檔題.2、A【解析】
由可得四邊形為平行四邊形,由·=0得四邊形的對角線垂直,故可得四邊形為菱形.【詳解】∵,∴與平行且相等,∴四邊形為平行四邊形.又,∴,即平行四邊形的對角線互相垂直,∴平行四邊形為菱形.故選A.【點睛】本題考查向量相等和向量數(shù)量積的的應用,解題的關鍵是正確理解有關的概念,屬于基礎題.3、C【解析】
將轉(zhuǎn)化為,利用向量數(shù)量積運算化簡,然后利用基本不等式求得表達式的最小值.【詳解】畫出圖像如下圖所示,,等號在,即為的中點時成立.故選C.【點睛】本小題主要考查平面向量加法運算,考查平面向量的數(shù)量積運算,考查利用基本不等式求最值,屬于中檔題.4、C【解析】
由等比中項的定義可得,根據(jù)等差數(shù)列的通項公式及前n項和公式,列方程解出和,進而求出.【詳解】因為是與的等比中項,所以,即,整理得,又因為,所以,故,故選C.【點睛】該題考查的是有關等差數(shù)列求和問題,涉及到的知識點有等差數(shù)列的通項,等比中項的定義,等差數(shù)列的求和公式,正確應用相關公式是解題的關鍵.5、C【解析】
利用特殊值對錯誤選項進行排除,然后證明正確的不等式.【詳解】取代入驗證可知,A、D選項錯誤;取代入驗證可知,B選項錯誤.對于C選項,由于,所以,即成立.故選:C【點睛】本小題主要考查不等式的性質(zhì),屬于基礎題.6、C【解析】
得到圓心距與半徑和差關系得到答案.【詳解】圓心距存在實數(shù)t,使得故答案選C【點睛】本題考查了兩圓的位置關系,意在考查學生的計算能力.7、B【解析】
設正方形的邊長為,計算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計算出所求事件的概率.【詳解】設正方形的邊長為,則陰影部分由三個小等腰直角三角形構(gòu)成,則正方形的對角線長為,則等腰直角三角形的邊長為,對應每個小等腰三角形的面積,則陰影部分的面積之和為,正方形的面積為,若在此正方形中任取一點,則此點取自黑色部分的概率為,故選:B.【點睛】本題考查面積型幾何概型概率公式計算事件的概率,解題的關鍵在于計算出所求事件對應區(qū)域的面積和總區(qū)域的面積,考查計算能力,屬于中等題.8、D【解析】
畫出可行域,根據(jù)邊界點的坐標計算出平面區(qū)域的面積.【詳解】畫出可行域如下圖所示,其中,故平面區(qū)域為三角形,且三角形面積為,故選D.【點睛】本小題主要考查線性規(guī)劃可行域面積的求法,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于基礎題.9、C【解析】
由題意易得數(shù)列的公比代入求和公式計算可得.【詳解】設等比數(shù)列公比為q,,則,解得,,故選:C.【點睛】本題考查等比數(shù)列的求和公式和通項公式,求出數(shù)列的公比是解決問題的關鍵,屬基礎題.10、C【解析】
利用等差數(shù)列的求和公式及性質(zhì)即可得到答案.【詳解】由于,根據(jù)等差數(shù)列的性質(zhì),,故選C.【點睛】本題主要考查等差數(shù)列的性質(zhì)與求和,難度不大.二、填空題:本大題共6小題,每小題5分,共30分。11、;【解析】試題分析:設垂直于直線的直線為,因為直線在軸上的截距為,所以,所以直線的方程是.考點:兩直線的垂直關系.12、【解析】
利用累加法和裂項求和得到答案.【詳解】當時滿足故答案為【點睛】本題考查了數(shù)列的累加法,裂項求和法,意在考查學生對于數(shù)列公式和方法的靈活運用.13、【解析】
利用余弦定理表示出與,代入已知等式中,整理得到,再利用余弦定理表示出,將及的值代入用表示出,將表示出的與代入中計算,即可求出值.【詳解】由題意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,則,故答案為.【點睛】本題考查了解三角形的綜合應用,高考中經(jīng)常將三角變換與解三角形知識綜合起來命題,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理實現(xiàn)邊角互化;以上特征都不明顯時,則要考慮兩個定理都有可能用到.14、(2)(4)【解析】
采用逐一驗證法,利用線面的位置關系判斷,可得結(jié)果.【詳解】(1)錯,若在平面內(nèi)存在直線與平行,則//平面,可知//,而與相交,故矛盾(2)對,如圖作,根據(jù)題意可知平面平面所以,作,點在平面,則平面,而平面,所以,故正確(3)錯,若平面,則,而所以平面,則,矛盾(4)對,如圖延長交于點連接,作//平面,平面,平面,所以//平面,故存在(5)錯,若平面,則又,所以平面所以,可知點在以為直徑的圓上又該圓與無交點,所以不存在.故答案為:(2)(4)【點睛】本題主要考查線線,線面,面面之間的關系,數(shù)形結(jié)合在此發(fā)揮重要作用,屬中檔題.15、【解析】
根據(jù)與終邊相同的角可以表示為這一方法,即可得出結(jié)論.【詳解】因為,所以與角終邊相同的角為.【點睛】本題考查終邊相同的角的表示方法,考查對基本概念以及基本知識的熟練程度,考查了數(shù)學運算能力,是簡單題.16、【解析】
求出長方體體積與三棱錐的體積后即可得到棱錐的體積與剩下的幾何體體積之比.【詳解】設長方體長寬高分別為,,,所以長方體體積,三棱錐體積,所以棱錐的體積與剩下的幾何體體積的之比為:.故答案為:.【點睛】本題主要考查了長方體體積公式,三棱錐體積公式,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)km.(2)【解析】
(1)設此山高,再根據(jù)三角形中三角函數(shù)的關系以及正弦定理求解即可.(2)由題意可知,當點C到公路距離最小時,仰望山頂D的仰角達到最大,再計算到直線的距離即可.【詳解】解:(1)設此山高,則,在中,,,.根據(jù)正弦定理得,即,解得(km).(2)由題意可知,當點C到公路距離最小時,仰望山頂D的仰角達到最大,所以過C作,垂足為E,連接DE.則,,,所以.【點睛】本題主要考查了解三角形在實際中的運用,需要根據(jù)題意找到對應的直角三角形中的關系,或利用正弦定理求解.屬于中檔題.18、(Ⅰ)證明見解析;(Ⅱ)【解析】試題分析:(Ⅰ)連接AC,設AC∩BD=Q,又點E是PC的中點,則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥PO于AB上一點M,則FM⊥平面ABCD,進一步利用求得最后利用平行線分線段成比例求出λ的值試題解析:(Ⅰ)連接AC,設AC∩BD=Q,又點E是PC的中點,則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE(Ⅱ)解:依據(jù)題意可得:PA=AB=PB=2,取AB中點O,所以PO⊥AB,且又平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥PO于AB上一點M,則FM⊥平面ABCD,因為四邊形ABCD是矩形,所以BC⊥平面PAB,則△PBC為直角三角形,所以,則直角三角形△ABD的面積為,由FM∥PO得:考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積19、(1)(2)【解析】
(1)由等差數(shù)列的性質(zhì),求得,進而得到,即可求得數(shù)列的通項公式;(2)由(1)可得,列用裂項法,即可求解數(shù)列的前項和.【詳解】(1)由等差數(shù)列的性質(zhì),可得,所以,又由,所以數(shù)列的通項公式.(2)由(1)可得,所以.【點睛】本題主要考查等差數(shù)列的通項公式及求和公式、以及“裂項法”求和的應用,此類題目是數(shù)列問題中的常見題型,解答中確定通項公式是基礎,準確計算求和是關鍵,能較好的考查考生的邏輯思維能力及基本計算能力,屬于基礎題.20、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2)當時,函數(shù)取最小值.【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由計算出的取值范圍,再利用正弦函數(shù)的基本性質(zhì)可求得該函數(shù)的最小值及其對應的值.【詳解】(1),所以,函數(shù)的最小正周期為;令,得,所以函數(shù)的單調(diào)增區(qū)間為;(2)當時,,所以,當時,即當時,取得最小值,所以,函數(shù)在區(qū)間上的最小值為,此時.【點睛】本題考查正弦型函數(shù)的最小正周期和單調(diào)區(qū)間、最值的求解,解答的關鍵就是利用三角恒等變換思
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024民間借貸合同范本(28篇)
- 2025年農(nóng)村子女撫養(yǎng)費用分擔協(xié)議
- 2025年供電企業(yè)與用戶用電合作協(xié)議
- 2025年共同策劃健身房合作合同書
- 企業(yè)勞動合同協(xié)議2025年
- 2025年企業(yè)員工勞動合同補充協(xié)議范本
- 2025年鋁合金預拉伸厚板和蒙皮鋁合金板項目立項申請報告模范
- 2025年高性能陶瓷復合材料項目立項申請報告模板
- 2025年企業(yè)變更代理協(xié)議
- 2025年漲緊輪項目提案報告模板
- 中國人口研究專題報告-中國2025-2100年人口預測與政策建議-西南財經(jīng)大學x清華大學-202501
- 建筑工程安全與管理
- 幼兒園開學教師安全知識培訓
- 2024年山東水利職業(yè)學院高職單招職業(yè)技能測驗歷年參考題庫(頻考版)含答案解析
- 遼寧省名校聯(lián)盟2025年高三1月份聯(lián)合考試 語文試卷(含答案詳解)
- 工廠廠區(qū)道路拆除實施方案
- 25版六年級寒假特色作業(yè)
- 浙江省杭州市9+1高中聯(lián)盟2025屆高三一診考試英語試卷含解析
- 2025教科版一年級科學下冊教學計劃
- 中學生勞動安全課件
- 旅游行業(yè)智慧旅游營銷策略與方案
評論
0/150
提交評論