吉林省油田第十一中學2023-2024學年高一下數(shù)學期末統(tǒng)考試題含解析_第1頁
吉林省油田第十一中學2023-2024學年高一下數(shù)學期末統(tǒng)考試題含解析_第2頁
吉林省油田第十一中學2023-2024學年高一下數(shù)學期末統(tǒng)考試題含解析_第3頁
吉林省油田第十一中學2023-2024學年高一下數(shù)學期末統(tǒng)考試題含解析_第4頁
吉林省油田第十一中學2023-2024學年高一下數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省油田第十一中學2023-2024學年高一下數(shù)學期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列前n項的和為,,,則()A.25 B.26 C.27 D.282.已知集合,集合為整數(shù)集,則()A. B. C. D.3.已知向量滿足,.O為坐標原點,.曲線,區(qū)域.若是兩段分離的曲線,則()A. B. C. D.4.方程的解所在的區(qū)間為()A. B.C. D.5.若一個人下半身長(肚臍至足底)與全身長的比近似為5-12(5-12≈0.618A.身材完美,無需改善 B.可以戴一頂合適高度的帽子C.可以穿一雙合適高度的增高鞋 D.同時穿戴同樣高度的增高鞋與帽子6.對于數(shù)列,定義為數(shù)列的“好數(shù)”,已知某數(shù)列的“好數(shù)”,記數(shù)列的前項和為,若對任意的恒成立,則實數(shù)的取值范圍為()A. B. C. D.7.在中,內(nèi)角,,的對邊分別為,,,若,,,則的最小角為()A. B. C. D.8.某公司在甲、乙、丙、丁四個地區(qū)分別有150,120,180,150個銷售點.公司為了調(diào)查產(chǎn)品銷售情況,需從這600個銷售點中抽取一個容量為100的樣本.記這項調(diào)查為①;在丙地區(qū)有20個大型銷售點,要從中抽取7個調(diào)查其銷售收入和售后服務等情況,記這項調(diào)查為②,則完成①,②這兩項調(diào)查宜采用的抽樣方法依次是()A.分層抽樣法,系統(tǒng)抽樣法 B.分層抽樣法,簡單隨機抽樣法C.系統(tǒng)抽樣法,分層抽樣法 D.簡單隨機抽樣法,分層抽樣法9.已知實數(shù)x,y滿足約束條件,那么目標函數(shù)的最大值是()A.0 B.1 C. D.1010.如圖是某幾何體的三視圖,則該幾何體的外接球的表面積是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.有一個底面半徑為2,高為2的圓柱,點,分別為這個圓柱上底面和下底面的圓心,在這個圓柱內(nèi)隨機取一點P,則點P到點或的距離不大于1的概率是________.12.在平行四邊形中,=,邊,的長分別為2,1.若,分別是邊,上的點,且滿足,則的取值范圍是______.13.甲船在島的正南處,,甲船以每小時的速度向正北方向航行,同時乙船自出發(fā)以每小時的速度向北偏東的方向駛?cè)?,甲、乙兩船相距最近的距離是_____.14.函數(shù)的部分圖像如圖所示,則的值為________.15.已知直線過點,,則直線的傾斜角為______.16.已知數(shù)列滿足,,,則數(shù)列的通項公式為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知是等差數(shù)列,設數(shù)列的前n項和為,且,,又,.(1)求和的通項公式;(2)令,求的前n項和.18.已知數(shù)列的前項和為,點在直線上.(1)求數(shù)列的通項公式;(2)設,若數(shù)列的前項和為,求證:.19.在中,已知角的對邊分別為,且.(1)求角的大?。唬?)若,,求的面積.20.已知,為第二象限角.(1)求的值;(2)求的值.21.如圖,甲、乙兩個企業(yè)的用電負荷量關(guān)于投產(chǎn)持續(xù)時間(單位:小時)的關(guān)系均近似地滿足函數(shù).(1)根據(jù)圖象,求函數(shù)的解析式;(2)為使任意時刻兩企業(yè)用電負荷量之和不超過9,現(xiàn)采用錯峰用電的方式,讓企業(yè)乙比企業(yè)甲推遲小時投產(chǎn),求的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)等差數(shù)列的求和與通項性質(zhì)求解即可.【詳解】等差數(shù)列前n項的和為,故.故.故選:C【點睛】本題主要考查了等差數(shù)列通項與求和的性質(zhì)運用,屬于基礎題.2、A【解析】試題分析:,選A.【考點定位】集合的基本運算.3、A【解析】

由圓的定義及平面向量數(shù)量積的性質(zhì)及其運算可得:點P在以O為圓心,r為半徑的圓上運動且點P在以Q為圓心,半徑為1和2的圓環(huán)區(qū)域運動,由圖可得解.【詳解】建立如圖所示的平面直角坐標系,則,,由,則,即點P在以O為圓心,r為半徑的圓上運動,又,則點P在以Q為圓心,半徑為1和2的圓環(huán)區(qū)域運動,由圖可知:當C∩Ω是兩段分離的曲線時,r的取值范圍為:3<r<5,故選:A.【點睛】本題考查平面向量數(shù)量積的性質(zhì)及其運算,利用數(shù)形結(jié)合思想,將向量問題轉(zhuǎn)化為圓與圓的位置關(guān)系問題,考查轉(zhuǎn)化與化歸思想,屬于中等題.4、B【解析】試題分析:由題意得,設函數(shù),則,所以,所以方程的解所在的區(qū)間為,故選B.考點:函數(shù)的零點.5、C【解析】

對每一個選項逐一分析研究得解.【詳解】A.103103+72B.假設她需要戴上高度為x厘米的帽子,則103175C.假設她可以穿一雙合適高度為y的增高鞋,則103+D.假設同時穿戴同樣高度z的增高鞋與帽子,則103+故選:C【點睛】本題主要考查學生對新定義的理解和應用,屬于基礎題.6、B【解析】分析:由題意首先求得的通項公式,然后結(jié)合等差數(shù)列的性質(zhì)得到關(guān)于k的不等式組,求解不等式組即可求得最終結(jié)果.詳解:由題意,,則,很明顯n?2時,,兩式作差可得:,則an=2(n+1),對a1也成立,故an=2(n+1),則an?kn=(2?k)n+2,則數(shù)列{an?kn}為等差數(shù)列,故Sn?S6對任意的恒成立可化為:a6?6k?0,a7?7k?0;即,解得:.實數(shù)的取值范圍為.本題選擇B選項.點睛:“新定義”主要是指即時定義新概念、新公式、新定理、新法則、新運算五種,然后根據(jù)此新定義去解決問題,有時還需要用類比的方法去理解新的定義,這樣有助于對新定義的透徹理解.對于此題中的新概念,對閱讀理解能力有一定的要求.但是,透過現(xiàn)象看本質(zhì),它們考查的還是基礎數(shù)學知識,所以說“新題”不一定是“難題”,掌握好三基,以不變應萬變才是制勝法寶.7、A【解析】

由三角形大邊對大角可知所求角為角,利用余弦定理可求得,進而得到結(jié)果.【詳解】的最小角為角,則故選:【點睛】本題考查利用余弦定理解三角形的問題,關(guān)鍵是明確三角形中大邊對大角的特點,進而根據(jù)余弦定理求得所求角的余弦值.8、B【解析】

此題為抽樣方法的選取問題.當總體中個體較少時宜采用簡單隨機抽樣法;當總體中的個體差異較大時,宜采用分層抽樣;當總體中個體較多時,宜采用系統(tǒng)抽樣.【詳解】依據(jù)題意,第①項調(diào)查中,總體中的個體差異較大,應采用分層抽樣法;第②項調(diào)查總體中個體較少,應采用簡單隨機抽樣法.

故選B.【點睛】本題考查隨機抽樣知識,屬基本題型、基本概念的考查.9、D【解析】

根據(jù)約束條件,畫出可行域,再平移目標函數(shù)所在的直線,找到最優(yōu)點,將最優(yōu)點的坐標代入目標函數(shù)求最值.【詳解】畫出可行域(如圖),平移直線,當目標直線過點時,目標函數(shù)取得最大值,.故選:D【點睛】本題主要考查線性規(guī)劃求最值問題,還考查了數(shù)形結(jié)合的思想,屬于基礎題.10、B【解析】

由三視圖還原幾何體,可知該幾何體是由邊長為的正方體切割得到的四棱錐,可知所求外接球即為正方體的外接球,通過求解正方體外接球半徑,代入球的表面積公式可得到結(jié)果.【詳解】由三視圖可知,幾何體為如下圖所示的四棱錐:由上圖可知:四棱錐可由邊長為的正方體切割得到該正方體的外接球即為四棱錐的外接球四棱錐的外接球半徑外接球的表面積故選:【點睛】本題考查棱錐外接球表面積的求解問題,關(guān)鍵是能夠通過三視圖還原幾何體,并將幾何體放入正方體中,通過求解正方體的外接球表面積得到結(jié)果;需明確正方體外接球表面積為其體對角線長的一半.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

本題利用幾何概型求解.先根據(jù)到點的距離等于1的點構(gòu)成圖象特征,求出其體積,最后利用體積比即可得點到點,的距離不大于1的概率;【詳解】解:由題意可知,點P到點或的距離都不大于1的點組成的集合分別以、為球心,1為半徑的兩個半球,其體積為,又該圓柱的體積為,則所求概率為.故答案為:【點睛】本題主要考查幾何概型、圓柱和球的體積等基礎知識,考查運算求解能力,考查空間想象力、化歸與轉(zhuǎn)化思想.關(guān)鍵是明確滿足題意的測度為體積比.12、【解析】

以A為原點AB為軸建立直角坐標系,表示出MN的坐標,利用向量乘法公式得到表達式,最后計算取值范圍.【詳解】以A為原點AB為軸建立直角坐標系平行四邊形中,=,邊,的長分別為2,1設則當時,有最大值5當時,有最小值2故答案為【點睛】本題考查了向量運算和向量乘法的最大最小值,通過建立直角坐標系的方法簡化了技巧,是解決向量復雜問題的常用方法.13、【解析】

根據(jù)條件畫出示意圖,在三角形中利用余弦定理求解相距的距離,利用二次函數(shù)對稱軸及可求解出最值.【詳解】假設經(jīng)過小時兩船相距最近,甲、乙分別行至,,如圖所示,可知,,,.當小時時甲、乙兩船相距最近,最近距離為.【點睛】本題考查解三角形的實際應用,難度較易.關(guān)鍵是通過題意將示意圖畫出來,然后將待求量用未知數(shù)表示,最后利用函數(shù)思想求最值.14、【解析】

由圖可得,,求出,得出,利用,然后化簡即可求解【詳解】由題圖知,,所以,所以.由正弦函數(shù)的對稱性知,所以答案:【點睛】本題利用函數(shù)的周期特性求解,難點在于通過圖像求出函數(shù)的解析式和函數(shù)的最小正周期,屬于基礎題15、【解析】

根據(jù)兩點求斜率的公式求得直線的斜率,然后求得直線的傾斜角.【詳解】依題意,故直線的傾斜角為.【點睛】本小題主要考查兩點求直線斜率的公式,考查直線斜率和傾斜角的對應關(guān)系,屬于基礎題.16、.【解析】

由題意得出,可得出數(shù)列為等比數(shù)列,確定出該數(shù)列的首項和公比,可求出數(shù)列的通項公式,進而求出數(shù)列的通項公式.【詳解】設,整理得,對比可得,,即,且,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,,因此,,故答案為.【點睛】本題考查數(shù)列通項的求解,解題時要結(jié)合遞推式的結(jié)構(gòu)選擇合適的方法來求解,同時要注意等差數(shù)列和等比數(shù)列定義的應用,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】

(1)運用數(shù)列的遞推式,以及等比數(shù)列的通項公式可得,是等差數(shù)列,運用等差數(shù)列的通項公式可得首項和公差,可得所求通項公式;(2)求得,由數(shù)列的錯位相減法求和,結(jié)合等比數(shù)列的求和公式,即可得到所求和.【詳解】(1)當時,;當時,,且相減可得:故:是公差為d的等差數(shù)列,,即為:.(2),前n項和:兩式相減可得:化簡可得:【點睛】本題考查了數(shù)列綜合問題,考查了等差等比數(shù)列的通項公式,項和轉(zhuǎn)化,乘公比錯位相減等知識點,屬于較難題.18、(1)(2)見解析【解析】

(1)先利用時,由求出的值,再令,由,得出,將兩式相減得出數(shù)列為等比數(shù)列,得出該數(shù)列的公比,可求出;(2)利用對數(shù)的運算性質(zhì)以及等差數(shù)列的求和公式得出,并將裂項為,利用裂項法求出,于此可證明出所證不等式成立.【詳解】(1)由題可得.當時,,即.由題設,,兩式相減得.所以是以2為首項,2為公比的等比數(shù)列,故.(2),則,所以因為,所以,即證.【點睛】本題考查利用求通項,以及裂項法求和,利用求通項的原則是,另外在利用裂項法求和時要注意裂項法求和法所適用數(shù)列通項的基本類型,熟悉裂項法求和的基本步驟,都是??碱}型,屬于中等題.19、(1);(2).【解析】

(1)利用邊角互化思想得,由結(jié)合兩角和的正弦公式可求出的值,于此得出角的大?。唬?)由余弦定理可計算出,再利用三角形的面積公式可得出的面積.【詳解】(1)∵是的內(nèi)角,∴且,又由正弦定理:得:,化簡得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面積為.【點睛】本題考查正弦定理邊角互化的思想,考查余弦定理以及三角形的面積公式,本題巧妙的地方在于將配湊為,避免利用方程思想求出邊的值,考查計算能力,屬于中等題.20、(1);(2)【解析】

(1)根據(jù)同角三角函數(shù)平方關(guān)系即可求得結(jié)果;(2)利用同角三角函數(shù)商數(shù)關(guān)系可求得,代入兩角和差正切公式可求得結(jié)果.【詳解】(1)為第二象限角(2)由(1)知:【點睛】本題考查同角三角函數(shù)值的求解、兩角和差正切公式的應用;易錯點是忽略角所處的范圍,造成三角函數(shù)值符號求解錯誤.21、(1);(2)4【解析】

(1)由,得,由,得A,b,代入,求得,從而即可得到本題答案;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論