![江蘇省啟東市2023-2024學年數(shù)學高一下期末復習檢測試題含解析_第1頁](http://file4.renrendoc.com/view14/M07/0A/1E/wKhkGWZlNduAPmbnAAGtuGK75b0704.jpg)
![江蘇省啟東市2023-2024學年數(shù)學高一下期末復習檢測試題含解析_第2頁](http://file4.renrendoc.com/view14/M07/0A/1E/wKhkGWZlNduAPmbnAAGtuGK75b07042.jpg)
![江蘇省啟東市2023-2024學年數(shù)學高一下期末復習檢測試題含解析_第3頁](http://file4.renrendoc.com/view14/M07/0A/1E/wKhkGWZlNduAPmbnAAGtuGK75b07043.jpg)
![江蘇省啟東市2023-2024學年數(shù)學高一下期末復習檢測試題含解析_第4頁](http://file4.renrendoc.com/view14/M07/0A/1E/wKhkGWZlNduAPmbnAAGtuGK75b07044.jpg)
![江蘇省啟東市2023-2024學年數(shù)學高一下期末復習檢測試題含解析_第5頁](http://file4.renrendoc.com/view14/M07/0A/1E/wKhkGWZlNduAPmbnAAGtuGK75b07045.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省啟東市2023-2024學年數(shù)學高一下期末復習檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,BC邊上的高等于,則()A. B. C. D.2.如圖所示,已知以正方體所有面的中心為頂點的多面體的體積為,則該正方體的外接球的表面積為()A. B. C. D.3.已知數(shù)列中,,則()A. B. C. D.4.如圖,在圓心角為直角的扇形中,分別以為直徑作兩個半圓,在扇形內隨機取一點,則此點取自陰影部分的概率是()A. B. C. D.5.設正實數(shù)滿足,則當取得最大值時,的最大值為()A.0 B.1 C. D.36.如圖,B是AC上一點,分別以AB,BC,AC為直徑作半圓,從B作BD⊥AC,與半圓相交于D,AC=6,BD=22A.29 B.13 C.47.已知的三個內角所對的邊分別為,滿足,且,則的形狀為()A.等邊三角形 B.等腰直角三角形C.頂角為的等腰三角形 D.頂角為的等腰三角形8.在長方體中,,,則異面直線與所成角的余弦值為()A. B.C. D.9.在中,若°,°,.則=A. B. C. D.10.給出下列四個命題:①垂直于同一條直線的兩條直線互相平行;②平行于同一條直線的兩條直線平行;③若直線滿足,則;④若直線,是異面直線,則與,都相交的兩條直線是異面直線.其中假命題的個數(shù)是()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.我國南宋著名數(shù)學家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設的三個內角A、B、C所對的邊分別為a、b、c,面積為S,則“三斜公式”為.若,,則用“三斜公式”求得的面積為______.12.在等比數(shù)列中,,公比,若,則達到最大時n的值為____________.13.對任意的θ∈0,π2,不等式114.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.15.設在的內部,且,的面積與的面積之比為______.16.數(shù)列的前項和為,已知,且對任意正整數(shù),都有,若恒成立,則實數(shù)的最小值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.研究正弦函數(shù)的性質(1)寫出其單調增區(qū)間的表達式(2)利用五點法,畫出的大致圖像(3)用反證法證明的最小正周期是18.一只紅鈴蟲的產卵數(shù)和溫度有關,現(xiàn)收集了4組觀測數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點圖如下:溫度20253035產卵數(shù)/個520100325(1)根據(jù)散點圖判斷與哪一個更適宜作為產卵數(shù)關于溫度的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù),建立關于的回歸方程(數(shù)字保留2位小數(shù));(3)要使得產卵數(shù)不超過50,則溫度控制在多少以下?(最后結果保留到整數(shù))參考數(shù)據(jù):,,,,,,,,,,5201003251.6134.615.7819.已知角終邊上有一點,求下列各式的值.(1);(2)20.在中,,且邊上的中線長為,(1)求角的大?。?2)求的面積.21.如圖,在處有一港口,兩艘海輪同時從港口處出發(fā)向正北方向勻速航行,海輪的航行速度為20海里/小時,海輪的航行速度大于海輪.在港口北偏東60°方向上的處有一觀測站,1小時后在處測得與海輪的距離為30海里,且處對兩艘海輪,的視角為30°.(1)求觀測站到港口的距離;(2)求海輪的航行速度.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:設,故選C.考點:解三角形.2、A【解析】
設正方體的棱長為,則中間四棱錐的底面邊長為,由已知多面體的體積求解,得到正方體外接球的半徑,則外接球的表面積可求.【詳解】設正方體的棱長為,則中間四棱錐的底面邊長為,多面體的體積為,即.正方體的對角線長為.則正方體的外接球的半徑為.表面積為.故選:.【點睛】本題考查幾何體的體積的求法,考查空間想象能力以及計算能力,是基礎題.3、B【解析】
由數(shù)列的遞推關系,可得數(shù)列的周期性,再求解即可.【詳解】解:因為,①則,②①+②有:,即,則,即數(shù)列的周期為6,又,得,,則,故選:D.【點睛】本題考查了數(shù)列的遞推關系,重點考查了數(shù)列周期性的應用,屬基礎題.4、A【解析】試題分析:設扇形半徑為,此點取自陰影部分的概率是,故選B.考點:幾何概型.【方法點晴】本題主要考查幾何概型,綜合性較強,屬于較難題型.本題的總體思路較為簡單:所求概率值應為陰影部分的面積與扇形的面積之比.但是,本題的難點在于如何求陰影部分的面積,經分析可知陰影部分的面積可由扇形面積減去以為直徑的圓的面積,再加上多扣一次的近似“橢圓”面積.求這類圖形面積應注意切割分解,“多還少補”.5、B【解析】
x,y,z為正實數(shù),且,根據(jù)基本不等式得,當且僅當x=2y取等號,所以x=2y時,取得最大值1,此時,,當時,取最大值1,的最大值為1,故選B.6、C【解析】
求得陰影部分的面積和最大的半圓的面積,再根據(jù)面積型幾何概型的概率計算公式求解.【詳解】連接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),則有8=x(6-x),得x=2,所以AB=2,?BC=4,由此可得圖中陰影部分的面積等于π×3【點睛】本題考查了與面積有關的幾何概型的概率的求法,當試驗結果所構成的區(qū)域可用面積表示,用面積比計算概率.涉及了初中學習的射影定理,也可通過證明相似,求解各線段的長.7、D【解析】
先利用同角三角函數(shù)基本關系得,結合正余弦定理得進而得B,再利用化簡得,得A值進而得C,則形狀可求【詳解】由題即,由正弦定理及余弦定理得即故整理得,故故為頂角為的等腰三角形故選D【點睛】本題考查利用正余弦定理判斷三角形形狀,注意內角和定理,三角恒等變換的應用,是中檔題8、C【解析】
畫出長方體,將平移至,則,則即為異面直線與所成角,由余弦定理即可求解.【詳解】根據(jù)題意,畫出長方體如下圖所示:將平移至,則即為異面直線與所成角,,由余弦定理可得故選:C【點睛】本題考查了長方體中異面直線的夾角求法,余弦定理在解三角形中的應用,屬于基礎題.9、A【解析】∵在△ABC中,A=45°,B=60°,a=2,∴由正弦定理得:.本題選擇A選項.10、B【解析】
利用空間直線的位置關系逐一分析判斷得解.【詳解】①為假命題.可舉反例,如a,b,c三條直線兩兩垂直;②平行于同一條直線的兩條直線平行,是真命題;③若直線滿足,則,是真命題;④是假命題,如圖甲所示,c,d與異面直線,交于四個點,此時c,d異面,一定不會平行;當點B在直線上運動(其余三點不動),會出現(xiàn)點A與點B重合的情形,如圖乙所示,此時c,d共面且相交.故答案為B【點睛】本題主要考查空間直線的位置關系,意在考查學生對該知識的理解掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先由,根據(jù)余弦定理,求出,再由,結合余弦定理,求出,再由題意即可得出結果.【詳解】因為,所以,因此;又,由余弦定理可得,所以,因此.故答案為【點睛】本題主要考查解三角形,熟記正弦定理與余弦定理即可,屬于??碱}型.12、7【解析】
利用,得的值【詳解】因為,,所以為7.故答案為:7【點睛】本題考查等比數(shù)列的項的性質及單調性,找到與1的分界是關鍵,是基礎題13、-4,5【解析】1sin2θ+4cos2點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應用,否則會出現(xiàn)錯誤.14、10【解析】
根據(jù)等差數(shù)列的性質,可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.15、1:3【解析】
記,,可得:為的重心,利用比例關系可得:,,,結合:即可得解.【詳解】記,則則為的重心,如下圖由三角形面積公式可得:,,又為的重心,所以,所以所以【點睛】本題主要考查了三角形重心的向量結論,還考查了轉化能力及三角形面積比例計算,屬于難題.16、【解析】令,可得是首項為,公比為的等比數(shù)列,所以,,實數(shù)的最小值為,故答案為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析(3)見解析【解析】
(1)利用正弦函數(shù)的圖象和性質即可得解;(2)利用五點法作函數(shù)的圖象即可;(3)先證明,再假設存在,使得,令,可得,令,可得,得到矛盾,即可得證.【詳解】(1)單調遞增區(qū)間為,所以單調遞增區(qū)間的表達式為(2)列表:描點,連線,可得函數(shù)圖象如下:(3)證明:,假設存在,使得,即,令,則,即;再令,可得,得到矛盾,綜上可知的最小正周期是.【點睛】本題主要考查了正弦函數(shù)的單調性,五點法作函數(shù)的圖象,考查了反證法的應用,屬于中檔題.18、(I)選擇更適宜作為產卵數(shù)關于溫度的回歸方程類型;(II);(III)要使得產卵數(shù)不超過50,則溫度控制在以下.【解析】
(I)由于散點圖類似指數(shù)函數(shù)的圖像,由此選擇.(II)對;兩邊取以為底底而得對數(shù),將非線性回歸的問題轉化為線性回歸的問題,利用回歸直線方程的計算公式計算出回歸直線方程,進而化簡為回歸曲線方程.(III)令,解指數(shù)不等式求得溫度的控制范圍.【詳解】(I)依散點圖可知,選擇更適宜作為產卵數(shù)關于溫度的回歸方程類型。(II)因為,令,所以與可看成線性回歸,,所以,所以,即,(III)由即,解得,要使得產卵數(shù)不超過50,則溫度控制在以下?!军c睛】本小題主要考查散點圖的判斷,考查非線性回歸的求解方法,考查線性歸回直線方程的計算公式,考查了利用回歸方程進行預測.屬于中檔題.解題的關鍵點有兩個,首先是根據(jù)散點圖選擇出恰當?shù)幕貧w方程,其次是要將非線性回歸的問題,轉化為線性回歸來求解.19、(1);(2)【解析】
(1)根據(jù)三角函數(shù)的定義,可知;(2)原式上下同時除以,變?yōu)楸硎镜氖阶?,即可求得結果.【詳解】(1)(2),原式上下同時除以.【點睛】本題考查了三角函數(shù)的定義,屬于基礎題型.20、(Ⅰ);(Ⅱ).【解析】
(1)本題可根據(jù)三角函數(shù)相關公式將化簡為,然后根據(jù)即可求出角的大??;(2)本題首先可設的中點為,然后根據(jù)向量的平行四邊形法則得到,再然后通過化簡計算即可求得,最后通過三角形面積公式即可得出結果.【詳解】(1)由正弦定理邊角互換可得,所以.因為,所以,即,即,整理得.因為,所以,所以,即,所以.因為,所以,即.(2)設的中點為,根據(jù)向量的平行四邊形法則可知所以,即,因為,,所以,解得(負值舍去).所以.【點睛】本題考查三角恒等變換公式及解三角形相關公式的應用,考查了向量的平行四邊形法則以及向量的運算,考查了化歸與轉化思想,體現(xiàn)了綜合性,是難題.21、(1)海里;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廣告活動策劃與執(zhí)行代理合同范本
- 2025年度中小企業(yè)信用貸款合同范本及證明書格式
- 2025年度海運集裝箱清潔與消毒服務合同
- 2025年度糧食行業(yè)市場拓展與品牌推廣合同
- 2025年度家暴離婚財產分割專項法律服務合同
- 金華浙江金華蘭溪市人民政府辦公室招聘勞務派遣工作人員筆試歷年參考題庫附帶答案詳解
- 貴州2025年貴州開放大學(貴州職業(yè)技術學院)招聘41人筆試歷年參考題庫附帶答案詳解
- 衢州浙江衢州江山市峽口中心幼兒園招聘幼兒園專任教師筆試歷年參考題庫附帶答案詳解
- 珠海廣東珠海市澳深度合作區(qū)頌琴小學招聘臨聘專任教師7人筆試歷年參考題庫附帶答案詳解
- 湖南2025年湖南農業(yè)大學-岳麓山實驗室博士后招聘筆試歷年參考題庫附帶答案詳解
- 軟件系統(tǒng)項目實施方案(共3篇)
- 2024年全國現(xiàn)場流行病學調查職業(yè)技能競賽考試題庫-上部分(600題)
- 2025年中國鐵路設計集團有限公司招聘筆試參考題庫含答案解析
- (一模)晉城市2025年高三年第一次模擬考試 物理試卷(含AB卷答案解析)
- 實驗室5S管理培訓
- 醫(yī)院工程施工重難點分析及針對性措施
- 2025年春節(jié)安全專題培訓(附2024年10起重特大事故案例)
- GB/T 44958-2024化工設備安全管理規(guī)范
- 《化妝品包裝材料相容性試驗評估指南》
- 6張精美甘特圖圖表可編輯課件模板
- 2025年軋鋼原料工技能考試題庫
評論
0/150
提交評論