河北省唐山市玉田縣2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第1頁
河北省唐山市玉田縣2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第2頁
河北省唐山市玉田縣2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第3頁
河北省唐山市玉田縣2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第4頁
河北省唐山市玉田縣2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省唐山市玉田縣2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,則a2等于A.-10 B.-8 C.-6 D.-42.已知正方形的邊長為,若將正方形沿對角線折疊為三棱錐,則在折疊過程中,不能出現(xiàn)()A. B.平面平面 C. D.3.已知,則的值為()A. B. C. D.4.已知直線的方程為,,則直線的傾斜角范圍()A. B.C. D.5.已知,其中,若函數(shù)在區(qū)間內(nèi)有零點,則實數(shù)的取值可能是()A. B. C. D.6.高鐵、掃碼支付、共享單車、網(wǎng)購被稱為中國的“新四大發(fā)明”,為評估共享單車的使用情況,選了座城市作實驗基地,這座城市共享單車的使用量(單位:人次/天)分別為,,…,,下面給出的指標(biāo)中可以用來評估共享單車使用量的穩(wěn)定程度的是()A.,,…,的標(biāo)準(zhǔn)差 B.,,…,的平均數(shù)C.,,…,的最大值 D.,,…,的中位數(shù)7.若且,則下列不等式成立的是()A. B. C. D.8.函數(shù)是().A.周期為的偶函數(shù) B.周期為的奇函數(shù)C.周期為的偶函數(shù) D.周期為奇函數(shù)9.設(shè)等差數(shù)列的前n項和為,若,則()A.3 B.4 C.5 D.610.某中學(xué)高一從甲、乙兩個班中各選出7名學(xué)生參加2019年第三十屆“希望杯”全國數(shù)學(xué)邀請賽,他們?nèi)〉贸煽兊那o葉圖如圖,其中甲班學(xué)生成績的平均數(shù)是84,乙班學(xué)生成績的中位數(shù)是83,則的值為()A.4 B.5 C.6 D.7二、填空題:本大題共6小題,每小題5分,共30分。11.適合條件的角的取值范圍是______.12.函數(shù)的最小正周期為________.13.在某校舉行的歌手大賽中,7位評委為某同學(xué)打出的分?jǐn)?shù)如莖葉圖所示,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為______.14.已知,,則______.15.?dāng)?shù)列定義為,則_______.16.函數(shù)可由y=sin2x向左平移___________個單位得到.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.(1)求k的取值范圍;(2)若=12,其中O為坐標(biāo)原點,求|MN|.18.已知數(shù)列的前項和();(1)判斷數(shù)列是否為等差數(shù)列;(2)設(shè),求;(3)設(shè)(),,是否存在最小的自然數(shù),使得不等式對一切正整數(shù)總成立?如果存在,求出;如果不存在,說明理由;19.已知,函數(shù),,(1)證明:是奇函數(shù);(2)如果方程只有一個實數(shù)解,求a的值.20.在中,角,,所對的邊分別為,,,且,.(1)求證:是銳角三角形;(2)若,求的面積.21.在中,內(nèi)角所對的邊分別為,已知,且.(1)求;(2)若,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:有題可知,a1,a3,a4成等比數(shù)列,則有,又因為{an}是等差數(shù)列,故有,公差d=2,解得;考點:?等差數(shù)列通項公式?等比數(shù)列性質(zhì)2、D【解析】對于A:取BD中點O,因為,AO所以面AOC,所以,故A對;對于B:當(dāng)沿對角線折疊成直二面角時,有面平面平面,故B對;對于C:當(dāng)折疊所成的二面角時,頂點A到底面BCD的距離為,此時,故C對;對于D:若,因為,面ABC,所以,而,即直角邊長與斜邊長相等,顯然不對;故D錯;故選D點睛:本題考查了立體幾何中折疊問題,要分析清楚折疊前后的變化量與不變量以及線線與線面的位置關(guān)系,屬于中檔題.3、C【解析】

根據(jù)輔助角公式即可.【詳解】由輔助角公式得所以,選C.【點睛】本題主要考查了輔助角公式的應(yīng)用:,屬于基礎(chǔ)題.4、B【解析】

利用直線斜率與傾斜角的關(guān)系即可求解.【詳解】由直線的方程為,所以,即直線的斜率,由.所以,又直線的傾斜角的取值范圍為,由正切函數(shù)的性質(zhì)可得:直線的傾斜角為.故選:B【點睛】本題考查了直線的斜率與傾斜角之間的關(guān)系,同時考查了正弦函數(shù)的值域以及正切函數(shù)的性質(zhì),屬于基礎(chǔ)題.5、D【解析】

求出函數(shù),令,,根據(jù)不等式求解,即可得到可能的取值.【詳解】由題:,其中,令,,若函數(shù)在區(qū)間內(nèi)有零點,則有解,解得:當(dāng)當(dāng)當(dāng)結(jié)合四個選項可以分析,實數(shù)的取值可能是.故選:D【點睛】此題考查根據(jù)函數(shù)零點求參數(shù)的取值范圍,需要熟練掌握三角函數(shù)的圖像性質(zhì),求出函數(shù)零點再討論其所在區(qū)間列不等式求解.6、A【解析】

利用方差或標(biāo)準(zhǔn)差表示一組數(shù)據(jù)的穩(wěn)定程度可得出選項.【詳解】表示一組數(shù)據(jù)的穩(wěn)定程度是方差或標(biāo)準(zhǔn)差,標(biāo)準(zhǔn)差越小,數(shù)據(jù)越穩(wěn)定故選:A【點睛】本題考查了用樣本估計總體,需掌握住數(shù)據(jù)的穩(wěn)定程度是用方差或標(biāo)準(zhǔn)差估計的,屬于基礎(chǔ)題.7、D【解析】

利用作差法對每一個選項逐一判斷分析.【詳解】選項A,所以a≥b,所以該選項錯誤;選項B,,符合不能確定,所以該選項錯誤;選項C,,符合不能確定,所以該選項錯誤;選項D,,所以,所以該選項正確.故選D【點睛】本題主要考查實數(shù)大小的比較,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.8、B【解析】因,故是奇函數(shù),且最小正周期是,即,應(yīng)選答案B.點睛:解答本題時充分運(yùn)用題設(shè)條件,先借助二倍角的余弦公式的變形,將函數(shù)的形式進(jìn)行化簡,然后再驗證函數(shù)的奇偶性與周期性,從而獲得問題的答案.9、C【解析】

由又,可得公差,從而可得結(jié)果.【詳解】是等差數(shù)列又,∴公差,,故選C.【點睛】本題主要考查等差數(shù)列的通項公式與求和公式的應(yīng)用,意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,屬于中檔題.10、C【解析】

由均值和中位數(shù)定義求解.【詳解】由題意,,由莖葉圖知就是中位數(shù),∴,∴.故選C.【點睛】本題考查莖葉圖,考查均值與中位數(shù),解題關(guān)鍵是讀懂莖葉圖.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)三角函數(shù)的符號法則,得,從而求出的取值范圍.【詳解】,的取值范圍的解集為.故答案為:【點睛】本題主要考查了三角函數(shù)符號法則的應(yīng)用問題,是基礎(chǔ)題.12、.【解析】

根據(jù)正切型函數(shù)的周期公式可計算出函數(shù)的最小正周期.【詳解】由正切型函數(shù)的周期公式得,因此,函數(shù)的最小正周期為,故答案為.【點睛】本題考查正切型函數(shù)周期的求解,解題的關(guān)鍵在于正切型函數(shù)周期公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.13、2【解析】

去掉分?jǐn)?shù)后剩余數(shù)據(jù)為22,23,24,25,26,先計算平均值,再計算方差.【詳解】去掉分?jǐn)?shù)后剩余數(shù)據(jù)為22,23,24,25,26平均值為:方差為:故答案為2【點睛】本題考查了方差的計算,意在考查學(xué)生的計算能力.14、【解析】

由,然后利用兩角差的正切公式可計算出的值.【詳解】.故答案為:.【點睛】本題考查利用兩角差的正切公式求值,解題的關(guān)鍵就是弄清所求角與已知角之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.15、【解析】

由已知得兩式,相減可發(fā)現(xiàn)原數(shù)列的奇數(shù)項和偶數(shù)項均為等差數(shù)列,分類討論分別算出奇數(shù)項的和和偶數(shù)項的和,再相加得原數(shù)列前的和【詳解】兩式相減得數(shù)列的奇數(shù)項,偶數(shù)項分別成等差數(shù)列,,,,數(shù)列的前2n項中所有奇數(shù)項的和為:,數(shù)列的前2n項中所有偶數(shù)項的和為:【點睛】對于遞推式為,其特點是隔項相減為常數(shù),這種數(shù)列要分類討論,分偶數(shù)項和奇數(shù)項來研究,特別注意偶數(shù)項的首項為,而奇數(shù)項的首項為.16、【解析】

將轉(zhuǎn)化為,再利用平移公式得到答案.【詳解】向左平移故答案為【點睛】本題考查三角函數(shù)圖像的平移,將正弦函數(shù)化為余弦函數(shù)是解題的關(guān)鍵,也可以將余弦函數(shù)化為正弦函數(shù)求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(3);(3)3.【解析】試題分析:(3)由題意可得,直線l的斜率存在,用點斜式求得直線l的方程,根據(jù)圓心到直線的距離等于半徑求得k的值,可得滿足條件的k的范圍.(3)由題意可得,經(jīng)過點M、N、A的直線方程為y=kx+3,根據(jù)直線和圓相交的弦長公式進(jìn)行求解試題解析:(3)由題意可得,直線l的斜率存在,設(shè)過點A(2,3)的直線方程:y=kx+3,即:kx-y+3=2.由已知可得圓C的圓心C的坐標(biāo)(3,3),半徑R=3.故由,解得:.故當(dāng),過點A(2,3)的直線與圓C:相交于M,N兩點.(3)設(shè)M;N,由題意可得,經(jīng)過點M、N、A的直線方程為y=kx+3,代入圓C的方程,可得,∴,∴,由,解得k=3,故直線l的方程為y=x+3,即x-y+3=2.圓心C在直線l上,MN長即為圓的直徑.所以|MN|=3考點:直線與圓的位置關(guān)系;平面向量數(shù)量積的運(yùn)算18、(1)否;(2);(3);【解析】

(1)根據(jù)數(shù)列中與的關(guān)系式,即可求解數(shù)列的通項公式,再結(jié)合等差數(shù)列的定義,即可求解;(2)由(1)知,求得當(dāng)時,,當(dāng)時,,利用等差數(shù)列的前項和公式,分類討論,即可求解.(3)由(1)得到當(dāng)時,,當(dāng)時,,結(jié)合裂項法,求得,即可求解.【詳解】(1)由題意,數(shù)列的前項和(),當(dāng)時,,當(dāng),所以數(shù)列的通項公式為,所以數(shù)列不是等差數(shù)列.(2)由(1)知,令,解得,所以當(dāng)時,,當(dāng)時,,①當(dāng)時,②當(dāng)時,綜上可得.(3)由(1)可得,當(dāng)時,,當(dāng)時,,,要使得不等式對一切正整數(shù)總成立,則,即.【點睛】本題主要考查了數(shù)列中與的關(guān)系式,等差數(shù)列的定義,數(shù)列的絕對值的和,以及“裂項法”的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,以及推理與計算能力,試題有一定的綜合性,屬于中檔試題.19、(1)證明見解析(1)1【解析】

(1)運(yùn)用函數(shù)的奇偶性的定義即可得證(1)由題意可得有且只有兩個相等的實根,可得判別式為0,解方程可得所求值.【詳解】(1)證明:由函數(shù),,可得定義域為,且,可得為奇函數(shù);(1)方程只有一個實數(shù)解,即為,即△,解得舍去),則的值為1.【點睛】本題考查函數(shù)的奇偶性的判斷和二次方程有解的條件,考查方程思想和定義法,屬于基礎(chǔ)題.20、(1)證明見解析(2)【解析】

(1)由正弦定理、余弦定理得,則角C最大,由余弦定理可得答案.

(2)由平面向量數(shù)量積的運(yùn)算及三角形的面積公式結(jié)合(1)可得,利用面積公式可求解.【詳解】【詳解】

(1)由,根據(jù)正弦定理得,又,所以即,所以,因此邊最大,即角最大.設(shè)則即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論