福建省建甌市二中2024屆高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
福建省建甌市二中2024屆高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
福建省建甌市二中2024屆高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
福建省建甌市二中2024屆高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
福建省建甌市二中2024屆高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省建甌市二中2024屆高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,則實數(shù)的值為()A.2 B. C.3 D.2.設(shè)集合,則A. B. C. D.3.已知向量,,,則()A. B. C. D.4.若a、b、c>0且a(a+b+c)+bc=4-2,則2a+b+c的最小值為()A.-1 B.+1C.2+2 D.2-25.在下列結(jié)論中,正確的為()A.兩個有共同起點的單位向量,其終點必相同B.向量與向量的長度相等C.向量就是有向線段D.零向量是沒有方向的6.下列函數(shù)中,在區(qū)間上是減函數(shù)的是()A. B. C. D.7.右圖中,小方格是邊長為1的正方形,圖中粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.8.一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是A.兩次都中靶B.至少有一次中靶C.兩次都不中靶D.只有一次中靶9.一元二次不等式的解集為()A. B.C. D.10.設(shè)向量,,則是的A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.若等差數(shù)列的前項和,且,則______________.12.某中學從甲乙丙3人中選1人參加全市中學男子1500米比賽,現(xiàn)將他們最近集訓中的10次成績(單位:秒)的平均數(shù)與方差制成如下的表格:甲乙丙平均數(shù)250240240方差151520根據(jù)表中數(shù)據(jù),該中學應(yīng)選__________參加比賽.13.方程的解為______.14.已知,,若,則____15.已知棱長都相等正四棱錐的側(cè)面積為,則該正四棱錐內(nèi)切球的表面積為________.16.已知點,,若向量,則向量______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系中,以軸為始邊,作兩個角,它們終邊分別經(jīng)過點和,其中,,且.(1)求的值;(2)求的值.18.設(shè)數(shù)列的前項和為,滿足,且,數(shù)列滿足,對任意的,且成等比數(shù)列,其中.(1)求數(shù)列的通項公式(2)記,證明:當且時,19.如圖,四邊形是平行四邊形,平面平面,,,,,,,為的中點.(1)求證:平面;(2)求證:平面平面.20.在中,內(nèi)角所對的邊分別為.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.21.數(shù)列滿足:.(1)求證:為等比數(shù)列;(2)求的通項公式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)二角和與差的正弦公式化簡,,再切化弦,即可求解.【詳解】由題意又解得故選:【點睛】本題考查兩角和與差的正弦公式,屬于基礎(chǔ)題.2、B【解析】,選B.【考點】集合的運算【名師點睛】集合的交、并、補運算問題,應(yīng)先把集合化簡再計算,常常借助數(shù)軸或韋恩圖進行處理.3、D【解析】

利用平面向量垂直的坐標等價條件列等式求出實數(shù)的值.【詳解】,,,,解得,故選D.【點睛】本題考查向量垂直的坐標表示,解題時將向量垂直轉(zhuǎn)化為兩向量的數(shù)量積為零來處理,考查計算能力,屬于基礎(chǔ)題.4、D【解析】由a(a+b+c)+bc=4-2,得(a+c)·(a+b)=4-2.∵a、b、c>0.∴(a+c)·(a+b)≤(當且僅當a+c=b+a,即b=c時取“=”),∴2a+b+c≥2=2(-1)=2-2.故選:D點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤5、B【解析】

逐一分析選項,得到答案.【詳解】A.單位向量的方向任意,所以當起點相同時,終點在以起點為圓心的單位圓上,終點不一定相同,所以選項不正確;B.向量與向量是相反向量,方向相反,長度相等,所以選項正確;C.向量是既有大小,又有方向的向量,可以用有向線段表示,但不能說向量就是有向線段,所以選項不正確;D.規(guī)定零向量的方向任意,而不是沒有方向,所以選項不正確.故選B.【點睛】本題考查了向量的基本概念,屬于基礎(chǔ)題型.6、C【解析】

根據(jù)初等函數(shù)的單調(diào)性對各個選項的函數(shù)的解析式進行逐一判斷【詳解】函數(shù)在單調(diào)遞增,在單調(diào)遞增.

在單調(diào)遞減,在單調(diào)遞增.故選:C【點睛】本題主要考查了基本初等函數(shù)的單調(diào)性的判斷,屬于基礎(chǔ)試題.7、D【解析】

由三視圖可知,該幾何體為棱長為2的正方體截去一個三棱錐,由正方體的體積減去三棱錐的體積求解.【詳解】根據(jù)三視圖,可知原幾何體如下圖所示,該幾何體為棱長為的正方體截去一個三棱錐,則該幾何體的體積為.故選:D.【點睛】本題考查了幾何體三視圖的應(yīng)用問題以及幾何體體積的求法,關(guān)鍵是根據(jù)三視圖還原原來的空間幾何體,是中檔題.8、A【解析】

利用對立事件、互斥事件的定義直接求解.【詳解】一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是兩次都中靶.故選:A.【點睛】本題考查互事件的判斷,是中檔題,解題時要認真審題,注意對立事件、互斥事件的定義的合理運用.9、C【解析】

根據(jù)一元二次不等式的解法,即可求得不等式的解集,得到答案.【詳解】由題意,不等式,即或,解得,即不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的解法,其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.10、C【解析】

利用向量共線的性質(zhì)求得,由充分條件與必要條件的定義可得結(jié)論.【詳解】因為向量,,所以,即可以得到,不能推出,是“”的必要不充分條件,故選C.【點睛】本題主要考查向量共線的性質(zhì)、充分條件與必要條件的定義,屬于中檔題.利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設(shè)等差數(shù)列的公差為,根據(jù)題意建立和的方程組,解出這兩個量,即可求出的值.【詳解】設(shè)等差數(shù)列的公差為,由題意得,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列中項的計算,解題的關(guān)鍵就是要建立首項和公差的方程組,利用這兩個基本量來求解,考查運算求解能力,屬于基礎(chǔ)題.12、乙;【解析】

一個看均值,要均值小,成績好;一個看方差,要方差小,成績穩(wěn)定.【詳解】乙的均值比甲小,與丙相同,乙的方差與甲相同,但比丙小,即乙成績好,又穩(wěn)定,應(yīng)選乙、故答案為乙.【點睛】本題考查用樣本的數(shù)據(jù)特征來解決實際問題.一般可看均值(找均值好的)和方差(方差小的穩(wěn)定),這樣比較易得結(jié)論.13、或【解析】

由指數(shù)函數(shù)的性質(zhì)得,由此能求出結(jié)果.【詳解】方程,,或,解得或.故答案為或.【點睛】本題考查指數(shù)方程的解的求法,是基礎(chǔ)題,解題時要認真審題,注意指數(shù)函數(shù)的性質(zhì)的合理運用.14、【解析】

由,,得的坐標,根據(jù)得,由向量數(shù)量積的坐標表示即可得結(jié)果.【詳解】∵,,∴又∵,∴,即,所以,解得,故答案為.【點睛】本題主要考查了向量的坐標運算,兩向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.15、【解析】

根據(jù)側(cè)面積求出正四棱錐的棱長,畫出組合體的截面圖,根據(jù)三角形的相似求得四棱錐內(nèi)切球的半徑,于是可得內(nèi)切球的表面積.【詳解】設(shè)正四棱錐的棱長為,則,解得.于是該正四棱錐內(nèi)切球的大圓是如圖△PMN的內(nèi)切圓,其中,.∴.設(shè)內(nèi)切圓的半徑為,由∽,得,即,解得,∴內(nèi)切球的表面積為.【點睛】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.16、【解析】

通過向量的加減運算即可得到答案.【詳解】,.【點睛】本題主要考查向量的基本運算,難度很小.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)根據(jù)正弦的定義求得,再運用余弦的二倍角公式求解,(2)由(1)問可得、兩點的坐標,從而再運用正切的和角公式求解.【詳解】(1)由得:所以:(2)由則故因此.【點睛】本題考查三角函數(shù)的定義和余弦的二倍角公式和正切的和角公式,屬于基礎(chǔ)題.18、(1).;.(2)證明見解析.【解析】

(1)當時,由,兩式相減得,用等差中項確定是等差數(shù)列再求通項公式.令,根據(jù)成等比數(shù)列,求得,從而得到(2)由(1)知根據(jù)證明的結(jié)構(gòu)使用放縮法,得到,再相消法求和.【詳解】(1)當時,由,得,兩式相減得,當時,,所以是等差數(shù)列.又因為,所以,所以,所以..令,因為成等比數(shù)列,所以,所以,所以,又因為.,所以.(2)由(1)知,因為,所以,.同理所以所以.所以當且時,【點睛】本題主要考查了數(shù)列遞推關(guān)系和等比數(shù)列的性質(zhì),放縮法證明數(shù)列不等式問題,屬于難題.19、(1)見解析(2)見解析【解析】

(1)取中點,連接,,利用三角形中位線定理,結(jié)合已知,可以證明出四邊形為平行四邊形,利用平行四邊形的性質(zhì)和線面平行的判定定理可以證明出平面;(2)在中,利用余弦定理可以求出的值,利用勾股定理的逆定理可以得,由平面平面,利用面面垂直的性質(zhì)定理,可以得到平面,最后利用面面垂直的判斷定理可以證明出平面平面.【詳解】(1)取中點,連接,,在中,因為是中點所以且又因為,,所以且,即四邊形為平行四邊形,所以,又平面,平面平面.(2)在中,,,由余弦定理得,進而由勾股定理的逆定理得又因為平面,平面,又因為平面所以平面又平面,所以平面平面【點睛】本題考查了線面平行、面面垂直的證明,考查了線面平行的判斷定理、面面垂直的性質(zhì)定理和判定定理,考查了推理論證能力.20、(Ⅰ).=.(Ⅱ).【解析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進而得到,由轉(zhuǎn)化為,求出,進而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果.試題解析:(Ⅰ)解:在中,因為,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值為,的值為.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考點:正弦定理、余弦定理、解三角形【名師點睛】利用正弦定理進行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論