




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆青海省海南州高一數(shù)學第二學期期末復習檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點,,則與向量的方向相反的單位向量是()A. B. C. D.2.已知正三角形ABC邊長為2,D是BC的中點,點E滿足,則()A. B. C. D.-13.已知,,則在方向上的投影為()A. B. C. D.4.為了得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位5.在中,角的對邊分別為,若,則形狀是()A.直角三角形 B.等腰三角形C.等腰直角三角形 D.等腰或直角三角形6.橢圓中以點M(1,2)為中點的弦所在直線斜率為()A. B. C. D.7.如圖為A、B兩名運動員五次比賽成績的莖葉圖,則他們的平均成績和方差的關系是()A., B.,C., D.,8.在中,角,,所對的邊為,,,且為銳角,若,,,則()A. B. C. D.9.直線的傾斜角是()A. B. C. D.10.若扇形的面積為、半徑為1,則扇形的圓心角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分圖象如圖所示,則f()=________.12.如圖,在直四棱柱中,,,,分別為的中點,平面平面.給出以下幾個說法:①;②直線與的夾角為;③與平面所成的角為;④平面內(nèi)存在直線與平行.其中正確命題的序號是__________.13.把正整數(shù)排列成如圖甲所示的三角形數(shù)陣,然后擦去偶數(shù)行中的奇數(shù)和奇數(shù)行中的偶數(shù),得到如圖乙所示的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個數(shù)列,若,則________________.14.圓與圓的公共弦長為______________。15.設數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),則數(shù)列{}的前10項的和為__.16.若圓:與圓:相交于,兩點,且兩圓在點處的切線互相垂直,則公共弦的長度是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,,.(1)求證數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)設,數(shù)列的前項和,求證:18.已知數(shù)列中,.(1)求證:是等比數(shù)列,求數(shù)列的通項公式;(2)已知:數(shù)列,滿足①求數(shù)列的前項和;②記集合若集合中含有個元素,求實數(shù)的取值范圍.19.如圖,在△ABC中,AB=8,AC=3,∠BAC=60°,以點A為圓心,r=2為半徑作一個圓,設PQ為圓A的一條直徑.(1)請用表示,用表示;(2)記∠BAP=θ,求的最大值.20.解關于x的不等式21.已知的三個頂點為.(1)求過點且平行于的直線方程;(2)求過點且與、距離相等的直線方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)單位向量的定義即可求解.【詳解】,向量的方向相反的單位向量為,故選A.【點睛】本題主要考查了向量的坐標運算,向量的單位向量的概念,屬于中檔題.2、C【解析】
化簡,分別計算,,代入得到答案.【詳解】正三角形ABC邊長為2,D是BC的中點,點E滿足故答案選C【點睛】本題考查了向量的計算,將是解題的關鍵,也可以建立直角坐標系解得答案.3、A【解析】在方向上的投影為,選A.4、D【解析】
由函數(shù),根據(jù)三角函數(shù)的圖象變換,即可求解,得到答案.【詳解】由題意,函數(shù),為了得到函數(shù)的圖象,只需將函數(shù)的圖象向右平移個單位,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及正弦的倍角公式的應用,著重考查了推理與運算能力,屬于基礎題.5、D【解析】
由,利用正弦定理化簡可得sin2A=sin2B,由此可得結論.【詳解】∵,∴由正弦定理可得,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形狀是等腰三角形或直角三角形故選D.【點睛】本題考查三角形形狀的判斷,考查正弦定理的運用,考查學生分析解決問題的能力,屬于基礎題.6、A【解析】
先設出弦的兩端點的坐標,分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率.【詳解】設弦的兩端點為,,代入橢圓得,兩式相減得,即,即,即,即,∴弦所在的直線的斜率為,故選A.【點睛】本題主要考查了橢圓的性質(zhì)以及直線與橢圓的關系.在解決弦長的中點問題,涉及到“中點與斜率”時常用“點差法”設而不求,將弦所在直線的斜率、弦的中點坐標聯(lián)系起來,相互轉(zhuǎn)化,達到解決問題的目的,屬于中檔題.7、D【解析】
根據(jù)題中數(shù)據(jù),直接計算出平均值與方差,即可得出結果.【詳解】由題中數(shù)據(jù)可得,,,所以;又,,所以.故選D【點睛】本題主要考查平均數(shù)與方差的比較,熟記公式即可,屬于基礎題型.8、D【解析】
利用正弦定理化簡,再利用三角形面積公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【詳解】由于,有正弦定理可得:,即由于在中,,,所以,聯(lián)立,解得:,由于為銳角,且,所以所以在中,由余弦定理可得:,故(負數(shù)舍去)故答案選D【點睛】本題考查正弦定理,余弦定理,以及面積公式在三角形求邊長中的應用,屬于中檔題.9、B【解析】
先求斜率,即傾斜角的正切值,易得.【詳解】,可知,即,故選B【點睛】一般直線方程求傾斜角將直線轉(zhuǎn)換為斜截式直線方程易得斜率,然后再根據(jù)直線的斜率等于傾斜角的正切值易得傾斜角,屬于簡單題目.10、B【解析】設扇形的圓心角為α,則∵扇形的面積為,半徑為1,
∴故選B二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
根據(jù)圖象看出周期、特殊點的函數(shù)值,解出待定系數(shù)即可解得.【詳解】由圖可知:解得又因:所以又因:即所以又所以又因:所以即所以所以所以故得解.【點睛】本題考查由圖象求正切函數(shù)的解析式,屬于中檔題。12、①③.【解析】
利用線面平行的性質(zhì)定理可判斷①;利用平行線的性質(zhì)可得直線與的夾角等于直線與所成的角,在中即可判斷②;與平面所成的角即為與平面所成的角可判斷③;根據(jù)直線與平面的位置關系可判斷④;【詳解】對于①,由,平面平面,則,又,所以,故①正確;對于②,連接,由,即直線與的夾角等于直線與所成的角,在中,,顯然直線與的夾角不為,故②不正確;對于③,與平面所成的角即為與平面所成的角,根據(jù)三棱柱為直棱柱可知為與平面所成的角,在梯形中,,,,可解得與平面所成的角為,故③正確;對于④,由于與平面相交,故平面內(nèi)不存在與平行的直線.故答案為:①③【點睛】本題是一道立體幾何題目,考查了線面平行的性質(zhì)定理,求線面角以及直線與平面之間的位置關系,屬于中檔題.13、【解析】
由圖乙可得:第行有個數(shù),且第行最后的一個數(shù)為,從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,注意到,,據(jù)此確定n的值即可.【詳解】分析圖乙,可得①第行有個數(shù),則前行共有個數(shù),②第行最后的一個數(shù)為,③從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,又由,,則,則出現(xiàn)在第行,第行第一個數(shù)為,這行中第個數(shù)為,前行共有個數(shù),則為第個數(shù).故填.【點睛】歸納推理是由部分到整體、由特殊到一般的推理,由歸納推理所得的結論不一定正確,通常歸納的個體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法.14、【解析】
利用兩圓一般方程求兩圓公共弦方程,求其中一圓到公共弦的距離,利用直線被圓截得的弦長公式可得所求.【詳解】由兩圓方程相減得兩圓公共弦方程為,即,圓化為,圓心到直線的距離為1,所以兩圓公共弦長為,故答案為.【點睛】本題考查兩圓位置關系,直線與圓的位置關系,考查運算能力,屬于基本題.15、【解析】試題分析:∵數(shù)列滿足,且,∴當時,.當時,上式也成立,∴.∴.∴數(shù)列的前項的和.∴數(shù)列的前項的和為.故答案為.考點:(1)數(shù)列遞推式;(2)數(shù)列求和.16、【解析】
根據(jù)兩圓在點處的切線互相垂直,得出是直角三角形,求出,然后兩圓相減求出公共弦的直線方程,運用點到直線的距離公式求出圓心到公共弦的距離,進而求出公共弦長.【詳解】由題意,圓圓心坐標,半徑,圓圓心坐標,半徑,因為兩圓相交于點,且兩圓在點處的切線互相垂直,所以是直角三角形,,所以,由兩點間距離公式,,所以,解得,所以圓:,兩圓方程相減,得,即,所以公共弦:,圓心到公共弦的距離,故公共弦長故答案為:【點睛】本題主要考查兩圓公共弦的方程、圓弦長的求法和點到直線的距離公式,考查學生的分析能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2)見解析.【解析】
(1)根據(jù)遞推關系式可整理出,從而可證得結論;利用等比數(shù)列通項公式首先求解出,再整理出;(2)根據(jù)可求得,從而得到的通項公式,利用裂項相消法求得,從而使問題得證.【詳解】(1)由得:即,且數(shù)列是以為首項,為公比的等比數(shù)列數(shù)列的通項公式為:(2)由(1)得:又即:【點睛】本題考查利用遞推關系式證明等比數(shù)列、求解等比數(shù)列通項公式、裂項相消法求解數(shù)列前項和的問題,屬于常規(guī)題型.18、(1)證明見解析,(2)①②【解析】
(1)計算得到:得證.(2)①計算的通項公式為,利用錯位相減法得到.②將代入集合M,化簡并分離參數(shù)得,確定數(shù)列的單調(diào)性,根據(jù)集合中含有個元素得到答案.【詳解】(1),為等比數(shù)列,其中首項,公比為.所以,.(2)①數(shù)列的通項公式為①②①-②化簡后得.②將代入得化簡并分離參數(shù)得,設,則易知由于中含有個元素,所以實數(shù)要小于等于第5大的數(shù),且比第6大的數(shù)大.,,綜上所述.【點睛】本題考查了數(shù)列的證明,數(shù)列的通項公式,錯位相減法,數(shù)列的單調(diào)性,綜合性強計算量大,意在考查學生的計算能力和綜合應用能力.19、(1);(2)22.【解析】
利用向量的三角形法則即可求得答案由,,可得,利用向量的數(shù)量積的坐標表示的表達式,利用三角函數(shù)知識可求最值【詳解】(1)=-.(2)∵∠BAC=60°,設∠BAP=θ,∴∠CAP=60°+θ,∵AB=8,AC=3,AP=2,∴=()·(-)=8-6cos(θ+60°)+16cosθ=3sinθ+13cosθ+8=14sin(θ+φ)+8,.∴當sin(θ+φ)=1時,的最大值為22.【點睛】本題主要考查了三角函數(shù)與平面向量的綜合,而輔助角公式是解決三角函數(shù)的最值的常用方法,體現(xiàn)了轉(zhuǎn)化的思想在解題中的應用.20、見解析.【解析】試題分析:(1)討論的取值,分為,兩種情形,求出對應不等式的解集即可.試題解析:當a=0時,原不等式化為x+10,解得;當時,原不等式化為,解得;綜上所述,當a=0時,不等式的解集為,當時,不等式的解集為.點睛:本題考查了含有字母系數(shù)的不等式的解法與應用問題,元二次不等式的核心還是求一元二次方程的根,然后在結合圖象判定其區(qū)間解題時應用分類討論的思想,是中檔題目;常見的討論形式有:1、對二項式系數(shù)進行討論;2、相對應的方程是否有根進行討論;3、對應根的大小進行討論.21、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小班立秋美術課件
- 護士言行規(guī)范專項
- 河北省石家莊市第四十四中學2024-2025學年高一下學期3月月考 數(shù)學試卷(含解析)
- 護理文書書寫新規(guī)范
- 幼兒園年輪課件
- 教育培訓行業(yè)調(diào)研報告
- 護理骨干工作總結
- 華為全場景培訓
- 宗教場所消防安全培訓
- 場所安全知識培訓課件
- 2025道德講堂課件
- 學生心理健康一生一策檔案表
- 2025年湖北職業(yè)技術學院單招職業(yè)技能考試題庫匯編
- 2025年上半年綿竹市九綿產(chǎn)業(yè)投資限公司招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 國家義務教育質(zhì)量監(jiān)測八年級美術樣卷
- 2025年廣東省廣州市海珠區(qū)官洲街雇員招聘5人歷年自考難、易點模擬試卷(共500題附帶答案詳解)
- 滑坡地質(zhì)災害治理工程資源需求與保障措施
- 中央戲劇學院招聘考試真題2024
- 專題07力、運動和-5年(2020-2024)中考1年模擬物理真題分類匯編(天津?qū)S茫?帶答案解析)
- 浙江省溫州市2024年九年級學生學科素養(yǎng)檢測中考一模數(shù)學試卷(含答案)
- 人教版新教材英語七年級下冊Unit5課文原文翻譯
評論
0/150
提交評論