版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省蘭州市城關(guān)區(qū)第一中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,,則()A. B. C. D.2.如圖,直角的斜邊長(zhǎng)為2,,且點(diǎn)分別在軸,軸正半軸上滑動(dòng),點(diǎn)在線段的右上方.設(shè),(),記,,分別考察的所有運(yùn)算結(jié)果,則()A.有最小值,有最大值 B.有最大值,有最小值C.有最大值,有最大值 D.有最小值,有最小值3.不等式的解集為,則實(shí)數(shù)的值為()A. B.C. D.4.若函數(shù),則的值為()A. B. C. D.5.圓關(guān)于直線對(duì)稱(chēng),則的值是()A. B. C. D.6.已知向量,且為正實(shí)數(shù),若滿(mǎn)足,則的最小值為()A. B. C. D.7.函數(shù)的最小值為()A. B. C. D.8.?dāng)?shù)列,,,,,,的一個(gè)通項(xiàng)公式為()A. B.C. D.9.?dāng)?shù)列中,,,則().A. B. C. D.10.在等比數(shù)列中,,,則數(shù)列的前六項(xiàng)和為()A.63 B.-63 C.-31 D.31二、填空題:本大題共6小題,每小題5分,共30分。11.等腰直角中,,CD是AB邊上的高,E是AC邊的中點(diǎn),現(xiàn)將沿CD翻折成直二面角,則異面直線DE與AB所成角的大小為_(kāi)_______.12.設(shè)變量x、y滿(mǎn)足約束條件,則目標(biāo)函數(shù)的最大值為_(kāi)______.13.若角是第四象限角,則角的終邊在_____________14.方程組的增廣矩陣是________.15.已知等比數(shù)列的前項(xiàng)和為,,則的值是__________.16.用數(shù)學(xué)歸納法證明“”,在驗(yàn)證成立時(shí),等號(hào)左邊的式子是______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知點(diǎn),圓.(1)求過(guò)點(diǎn)M的圓的切線方程;(2)若直線與圓相交于A,B兩點(diǎn),且弦AB的長(zhǎng)為,求的值.18.已知數(shù)列中,,.(1)證明數(shù)列為等比數(shù)列,并求的通項(xiàng)公式;(2)數(shù)列滿(mǎn)足,數(shù)列的前項(xiàng)和為,求證.19.在△ABC中,AC=4,,.(Ⅰ)求的大??;(Ⅱ)若D為BC邊上一點(diǎn),,求DC的長(zhǎng)度.20.如圖,在處有一港口,兩艘海輪同時(shí)從港口處出發(fā)向正北方向勻速航行,海輪的航行速度為20海里/小時(shí),海輪的航行速度大于海輪.在港口北偏東60°方向上的處有一觀測(cè)站,1小時(shí)后在處測(cè)得與海輪的距離為30海里,且處對(duì)兩艘海輪,的視角為30°.(1)求觀測(cè)站到港口的距離;(2)求海輪的航行速度.21.記Sn為等差數(shù)列an的前n項(xiàng)和,已知(1)求an(2)求Sn,并求S
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
由,代入運(yùn)算即可得解.【詳解】解:因?yàn)?,,所?故選:A.【點(diǎn)睛】本題考查了兩角差的正切公式,屬基礎(chǔ)題.2、B【解析】
設(shè),用表示出,根據(jù)的取值范圍,利用三角函數(shù)恒等變換化簡(jiǎn),進(jìn)而求得最值的情況.【詳解】依題意,所以.設(shè),則,所以,,所以,當(dāng)時(shí),取得最大值為.,所以,所以,當(dāng)時(shí),有最小值為.故選B.【點(diǎn)睛】本小題主要考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查三角函數(shù)化簡(jiǎn)求值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.3、C【解析】
不等式的解集為,為方程的兩根,則根據(jù)根與系數(shù)關(guān)系可得,.故選C.考點(diǎn):一元二次不等式;根與系數(shù)關(guān)系.4、D【解析】
根據(jù)分段函數(shù)的定義域與函數(shù)解析式的關(guān)系,代值進(jìn)行計(jì)算即可.【詳解】解:由已知,又,又,所以:.
故選:D.【點(diǎn)睛】本題考查了分段函數(shù)的函數(shù)值計(jì)算問(wèn)題,抓住定義域的范圍,屬于基礎(chǔ)題.5、B【解析】圓關(guān)于直線對(duì)稱(chēng),所以圓心(1,1)在直線上,得.故選B.6、A【解析】
根據(jù)向量的數(shù)量積結(jié)合基本不等式即可.【詳解】由題意得,因?yàn)?,為正?shí)數(shù),則當(dāng)且僅當(dāng)時(shí)取等.所以選擇A【點(diǎn)睛】本題主要考查了向量的數(shù)量積以及基本不等式,在用基本不等式時(shí)要滿(mǎn)足一正二定三相等.屬于中等題7、D【解析】
令,即有,則,運(yùn)用基本不等式即可得到所求最小值,注意等號(hào)成立的條件.【詳解】令,即有,則,當(dāng)且僅當(dāng),即時(shí),取得最小值.故選:【點(diǎn)睛】本題考查基本不等式,配湊法求解,屬于基礎(chǔ)題.8、C【解析】
首先注意到數(shù)列的奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,其次數(shù)列各項(xiàng)絕對(duì)值構(gòu)成一個(gè)以1為首項(xiàng),以2為公差的等差數(shù)列,從而易求出其通項(xiàng)公式.【詳解】∵數(shù)列{an}各項(xiàng)值為,,,,,,∴各項(xiàng)絕對(duì)值構(gòu)成一個(gè)以1為首項(xiàng),以2為公差的等差數(shù)列,∴|an|=2n﹣1又∵數(shù)列的奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,∴an=(﹣1)n(2n﹣1).故選:C.【點(diǎn)睛】本題給出數(shù)列的前幾項(xiàng),猜想數(shù)列的通項(xiàng),挖掘其規(guī)律是關(guān)鍵.解題時(shí)應(yīng)注意數(shù)列的奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,否則會(huì)錯(cuò).9、B【解析】
通過(guò)取倒數(shù)的方式可知數(shù)列為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式求得,進(jìn)而得到結(jié)果.【詳解】由得:,即數(shù)列是以為首項(xiàng),為公差的等差數(shù)列本題正確選項(xiàng):【點(diǎn)睛】本題考查利用遞推關(guān)系式求解數(shù)列中的項(xiàng)的問(wèn)題,關(guān)鍵是能夠根據(jù)遞推關(guān)系式的形式,確定采用倒數(shù)法得到等差數(shù)列.10、B【解析】
利用等比數(shù)列通項(xiàng)公式求出公式,由此能求出數(shù)列的前六項(xiàng)和.【詳解】在等比數(shù)列中,,,解得數(shù)列的前六項(xiàng)和為:.故選:【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式求解基本量,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
取的中點(diǎn),連接,則與所成角即為與所成角,根據(jù)已知可得,,可以判斷三角形為等邊三角形,進(jìn)而求出異面直線直線DE與AB所成角.【詳解】取的中點(diǎn),連接,則,直線DE與AB所成角即為與所成角,,,,,,即三角形為等邊三角形,異面直線DE與AB所成角的大小為.故答案為:【點(diǎn)睛】本題考查立體幾何中的翻折問(wèn)題,考查了異面直線所成的角,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.12、3【解析】
可通過(guò)限定條件作出對(duì)應(yīng)的平面區(qū)域圖,再根據(jù)目標(biāo)函數(shù)特點(diǎn)進(jìn)行求值【詳解】可行域如圖所示;則可化為,由圖象可知,當(dāng)過(guò)點(diǎn)時(shí),有最大值,則其最大值為:故答案為:3.【點(diǎn)睛】線性規(guī)劃問(wèn)題關(guān)鍵是能正確畫(huà)出可行域,目標(biāo)函數(shù)可由幾何意義確定具體含義(最值或斜率)13、第二或第四象限【解析】
根據(jù)角是第四象限角,寫(xiě)出角的范圍,即可求出角的終邊所在位置.【詳解】因?yàn)榻鞘堑谒南笙藿?,所以,即有,?dāng)為偶數(shù)時(shí),角的終邊在第四象限;當(dāng)為奇數(shù)時(shí),角的終邊在第二象限,故角的終邊在第二或第四象限.【點(diǎn)睛】本題主要考查象限角的集合的應(yīng)用.14、【解析】
理解方程增廣矩陣的涵義,即可由二元線性方程組,寫(xiě)出增廣矩陣.【詳解】由題意,方程組的增廣矩陣為其系數(shù)以及常數(shù)項(xiàng)構(gòu)成的矩陣,故方程組的增廣矩陣是.故答案為:【點(diǎn)睛】本題考查了二元一次方程組與增廣矩陣的關(guān)系,需理解增廣矩陣的涵義,屬于基礎(chǔ)題.15、1【解析】
根據(jù)等比數(shù)列前項(xiàng)和公式,由可得,通過(guò)化簡(jiǎn)可得,代入的值即可得結(jié)果.【詳解】∵,∴,顯然,∴,∴,∴,∴,故答案為1.【點(diǎn)睛】本題主要考查等比數(shù)列的前項(xiàng)和公式,本題解題的關(guān)鍵是看出數(shù)列的公比的值,屬于基礎(chǔ)題.16、【解析】
根據(jù)左邊的式子是從開(kāi)始,結(jié)束,且指數(shù)依次增加1求解即可.【詳解】因?yàn)樽筮叺氖阶邮菑拈_(kāi)始,結(jié)束,且指數(shù)依次增加1所以,左邊的式子為,故答案為.【點(diǎn)睛】項(xiàng)數(shù)的變化規(guī)律,是利用數(shù)學(xué)歸納法解答問(wèn)題的基礎(chǔ),也是易錯(cuò)點(diǎn),要使問(wèn)題順利得到解決,關(guān)鍵是注意兩點(diǎn):一是首尾兩項(xiàng)的變化規(guī)律;二是相鄰兩項(xiàng)之間的變化規(guī)律.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或.(2)【解析】
(1)分切線的斜率不存在與存在兩種情況分析.當(dāng)斜率存在時(shí)設(shè)方程為,再根據(jù)圓心到直線的距離等于半徑求解即可.(2)利用垂徑定理根據(jù)圓心到直線的距離列出等式求解即可.【詳解】解:(1)由題意知圓心的坐標(biāo)為,半徑,當(dāng)過(guò)點(diǎn)M的直線的斜率不存在時(shí),方程為.由圓心到直線的距離知,此時(shí),直線與圓相切.當(dāng)過(guò)點(diǎn)M的直線的斜率存在時(shí),設(shè)方程為,即.由題意知,解得,∴方程為.故過(guò)點(diǎn)M的圓的切線方程為或.(2)∵圓心到直線的距離為,∴,解得.【點(diǎn)睛】本題主要考查了直線與圓相切與相交時(shí)的求解.注意直線過(guò)定點(diǎn)時(shí)分析斜率不存在與存在兩種情況.直線與圓相切用圓心到直線的距離等于半徑列式,直線與圓相交用垂徑定理列式.屬于中檔題.18、(1)證明見(jiàn)解析;;(2)【解析】
(1)先證明數(shù)列是以3為公比,以為首項(xiàng)的等比數(shù)列,從而,由此能求出的通項(xiàng)公式;(2)由(1)推導(dǎo)出,從而,利用錯(cuò)位相減法求和,利用放縮法證明.【詳解】由,,得,,數(shù)列是以3為公比,以為首項(xiàng)的等比數(shù)列,從而,數(shù)列滿(mǎn)足,,,,兩式相減得:,,,【點(diǎn)睛】本題主要考查等比數(shù)列的定義、通項(xiàng)公式與求和公式,以及錯(cuò)位相減法的應(yīng)用,是中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解,在寫(xiě)出“”與“”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫(xiě)出“”的表達(dá)式.19、(Ⅰ);(Ⅱ)或【解析】
(Ⅰ)由正弦定理得到,在結(jié)合三角形內(nèi)角的性質(zhì)即可的大??;(Ⅱ)由(Ⅰ)可得的大小,在中,利用余弦定理即可求出邊的長(zhǎng).【詳解】(Ⅰ)在中,由正弦定理得,所以.因?yàn)?,所以,所以.(Ⅱ)在中,.在中,由余弦定理,得,即,解得或.?jīng)檢驗(yàn),都符合題意.【點(diǎn)睛】本題主要考查正弦定理與余弦定理,屬于基礎(chǔ)題.20、(1)海里;(2)速度為海里/小時(shí)【解析】
(1)由已知可知,所以在中,運(yùn)用余弦定理易得OA的長(zhǎng).(2)因?yàn)镃航行1小時(shí)到達(dá)C,所以知道OC的長(zhǎng)即可,即求BC的長(zhǎng).在中,由正弦定理求得,在中,再由正弦定理即可求出BC.【詳解】(1)因?yàn)楹惖乃俣葹?0海里/小時(shí),所以1小時(shí)后,海里又海里,,所以中,由余弦定理知:即即,解得:海里(2)中,由正弦定理知:解得:中,,,所以所以在中,由正弦定理知:,解得:所以答:船的速度為海里/小時(shí)【點(diǎn)睛】三角形中一般已知三個(gè)條件可求其他條件,用到
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025湖南省勞動(dòng)合同條例全文
- 財(cái)務(wù)企業(yè)咨詢(xún)計(jì)劃
- 9 這些是大家的(教學(xué)實(shí)錄)-部編版道德與法治二年級(jí)上冊(cè)
- 9 生活離不開(kāi)規(guī)則 (教學(xué)實(shí)錄)2023-2024學(xué)年統(tǒng)編版道德與法治三年級(jí)下冊(cè)
- 2024年店鋪股份買(mǎi)賣(mài)意向書(shū)3篇
- 2024年度綠色包裝材料運(yùn)輸與回收利用合同2篇
- 2024年實(shí)驗(yàn)室裝修工程及環(huán)保設(shè)施配置合同3篇
- 2024年度貨物進(jìn)出口代理合同及物流服務(wù)條款3篇
- 2024年夏季空調(diào)養(yǎng)護(hù)合同3篇
- 2024至2030年中國(guó)注膠機(jī)行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 2023-2024學(xué)年四川省成都市金牛區(qū)八年級(jí)(上)期末數(shù)學(xué)試卷
- 德邦物流-第三方物流服務(wù)
- 混凝土冬季施工保溫保濕措施
- 心電監(jiān)護(hù)技術(shù)
- 2024年華潤(rùn)電力投資有限公司招聘筆試參考題庫(kù)含答案解析
- 壟斷行為的定義與判斷準(zhǔn)則
- 模具開(kāi)發(fā)FMEA失效模式分析
- 聶榮臻將軍:中國(guó)人民解放軍的奠基人之一
- 材料化學(xué)專(zhuān)業(yè)大學(xué)生職業(yè)生涯規(guī)劃書(shū)
- 乳品加工工(中級(jí))理論考試復(fù)習(xí)題庫(kù)(含答案)
- 《教材循環(huán)利用》課件
評(píng)論
0/150
提交評(píng)論