版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆宿州市重點中學數(shù)學高一下期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知一直線經(jīng)過兩點,,且傾斜角為,則的值為()A.-6 B.-4 C.2 D.62.過點P(-2,4)作圓O:(x-2)2+(y-1)2=25的切線l,直線m:ax-3y=0與直線l平行,則直線l與m間的距離為()A.4 B.2 C.85 D.123.若tan()=2,則sin2α=()A. B. C. D.4.已知非零實數(shù)a,b滿足,則下列不等關系一定成立的是()A. B. C. D.5.若數(shù)列滿足(,為常數(shù)),則稱數(shù)列為“調(diào)和數(shù)列”.已知數(shù)列為調(diào)和數(shù)列,且,則的最大值是()A.50 B.100 C.150 D.2006.在中,、、分別是角、、的對邊,若,則的形狀是()A.等腰三角形 B.鈍角三角形 C.直角三角形 D.銳角三角形7.在中,角所對的邊分別為.若,,,則等于()A. B. C. D.8.在數(shù)列中,,則數(shù)列的前n項和的最大值是()A.136 B.140 C.144 D.1489.某同學使用計算器求30個數(shù)據(jù)的平均數(shù)時,錯將其中一個數(shù)據(jù)105輸入為15,那么由此求出的平均數(shù)與實際平均數(shù)的差是()A.3.5 B.3 C.-0.5 D.-310.某學校高一、高二、高三年級的學生人數(shù)分別為、、人,該校為了了解本校學生視力情況,現(xiàn)用分層抽樣的方法從該校高中三個年級的學生中抽取容量為的樣本,則應從高三年級抽取的學生人數(shù)為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________12.已知等比數(shù)列的公比為,它的前項積為,且滿足,,,給出以下四個命題:①;②;③為的最大值;④使成立的最大的正整數(shù)為4031;則其中正確命題的序號為________13.若不等式對于任意都成立,則實數(shù)的取值范圍是____________.14.如果事件A與事件B互斥,且,,則=.15.等比數(shù)列中首項,公比,則______.16.已知實數(shù)滿足條件,則的最大值是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設等比數(shù)列的前n項和為.已知,,求和.18.某企業(yè)2015年的純利潤為500萬元,因為企業(yè)的設備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降.若不進行技術改造,預測從2015年開始,此后每年比上一年純利潤減少20萬元.如果進行技術改造,2016年初該企業(yè)需一次性投入資金600萬元,在未扣除技術改造資金的情況下,預計2016年的利潤為750萬元,此后每年的利潤比前一年利潤的一半還多250萬元.(1)設從2016年起的第n年(以2016年為第一年),該企業(yè)不進行技術改造的年純利潤為萬元;進行技術改造后,在未扣除技術改造資金的情況下的年利潤為萬元,求和;(2)設從2016年起的第n年(以2016年為第一年),該企業(yè)不進行技術改造的累計純利潤為萬元,進行技術改造后的累計純利潤為萬元,求和;(3)依上述預測,從2016年起該企業(yè)至少經(jīng)過多少年,進行技術改造的累計純利潤將超過不進行技術改造的累計純利潤?19.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.20.已知點,圓.(1)求過點且與圓相切的直線方程;(2)若直線與圓相交于,兩點,且弦的長為,求實數(shù)的值.21.已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求函數(shù)在區(qū)間上的最值以及相應的x的取值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)傾斜角為得到斜率,再根據(jù)兩點斜率公式計算得到答案.【詳解】一直線經(jīng)過兩點,,則直線的斜率為.直線的傾斜角為∴,即.故答案選C.【點睛】本題考查了直線的斜率,意在考查學生的計算能力.2、A【解析】設l:ax-3y+m=0∴-2a-12+m=0∴ax-3y+2a+12=0因此|2a-3+2a+12|a2+32=5∴a=4,因此直線3、B【解析】
由兩角差的正切得tan,化sin2α為tan的齊次式求解【詳解】tan()=2,則則sin2α=故選:B【點睛】本題考查兩角差的正切公式,考查二倍角公式及齊次式求值,意在考查公式的靈活運用,是基礎題4、D【解析】
根據(jù)不等式的基本性質,一一進行判斷即可得出正確結果.【詳解】A.,取,顯然不成立,所以該選項錯誤;B.,取,顯然不成立,所以該選項錯誤;C.,取,顯然不成立,所以該選項錯誤;D.,由已知且,所以,即.所以該選項正確.故選:.【點睛】本題考查不等式的基本性質,屬于容易題.5、B【解析】
根據(jù)調(diào)和數(shù)列定義知為等差數(shù)列,再由前20項的和為200知,最后根據(jù)基本不等式可求出的最大值。【詳解】因為數(shù)列為調(diào)和數(shù)列,所以,即為等差數(shù)列又,又大于0所以【點睛】本題考查了新定義“調(diào)和數(shù)列”的性質、等差數(shù)列的性質及其前n項公式、基本不等式的性質,屬于難題。6、A【解析】
由正弦定理和,可得,在利用三角恒等變換的公式,化簡得,即可求解.【詳解】在中,由正弦定理,由,可得,又由,則,即,即,解得,所以為等腰三角形,故選A.【點睛】本題主要考查了正弦定理的應用,以及三角形形狀的判定,其中解答中熟練應用正弦定理的邊角互化,合理利用三角恒等變換的公式化簡是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、B【解析】
利用正弦定理可求.【詳解】由正弦定理得.故選B.【點睛】本題考查正弦定理的應用,屬于容易題.8、C【解析】
可得數(shù)列為等差數(shù)列且前8項為正數(shù),第9項為0,從第10項開始為負數(shù),可得前8或9項和最大,由求和公式計算可得.【詳解】解:∵在數(shù)列中,,
,即數(shù)列為公差為?4的等差數(shù)列,
,
令可得,
∴遞減的等差數(shù)列中前8項為正數(shù),第9項為0,從第10項開始為負數(shù),
∴數(shù)列的前8或9項和最大,
由求和公式可得
故選:C.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的判定,屬基礎題.9、D【解析】
因為錯將其中一個數(shù)據(jù)105輸入為15,所以此時求出的數(shù)比實際的數(shù)差是,因此平均數(shù)之間的差是.故答案為D10、C【解析】
設從高三年級抽取的學生人數(shù)為,根據(jù)總體中和樣本中高三年級所占的比例相等列等式求出的值.【詳解】設從高三年級抽取的學生人數(shù)為,由題意可得,解得,因此,應從高三年級抽取的學生人數(shù)為,故選:C.【點睛】本題考查分層抽樣中的相關計算,解題時要利用總體中每層的抽樣比例相等或者總體或樣本中每層的所占的比相等來列等式求解,考查運算求解能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
通過將圖形轉化為平面圖形,然后利用放球前后體積等量關系求得球的體積.【詳解】作出相關圖形,顯然,因此,因此放球前,球O與邊相切于點M,故,則,所以,,所以放球后,而,而,解得.【點睛】本題主要考查圓錐體積與球體積的相關計算,建立體積等量關系是解決本題的關鍵,意在考查學生的劃歸能力,計算能力和分析能力.12、②③【解析】
利用等比數(shù)列的性質,可得,得出,進而判斷②③④,即可得到答案.【詳解】①中,由等比數(shù)列的公比為,且滿足,,,可得,所以,且所以是錯誤的;②中,由等比數(shù)列的性質,可得,所以是正確的;③中,由,且,,所以前項之積的最大值為,所以是正確的;④中,,所以正確.綜上可得,正確命題的序號為②③.故答案為:②③.【點睛】本題主要考查了等比數(shù)列的性質的應用,其中解答中熟記等比數(shù)列的性質,合理推算是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.13、【解析】
利用換元法令(),將不等式左邊構造成一次函數(shù),根據(jù)一次函數(shù)的性質列不等式組,解不等式組求得的取值范圍.【詳解】令,,則.由已知得,不等式對于任意都成立.又令,則,即,解得.所以所求實數(shù)的取值范圍是.故答案為:【點睛】本小題主要考查不等式恒成立問題的求解策略,考查三角函數(shù)的取值范圍,考查一次函數(shù)的性質,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.14、0.5【解析】
表示事件A與事件B滿足其中之一占整體的占比.所以根據(jù)互斥事件概率公式求解.【詳解】【點睛】此題考查互斥事件概率公式,關鍵點在于理解清楚題目概率表示的實際含義,屬于簡單題目.15、9【解析】
根據(jù)等比數(shù)列求和公式,將進行轉化,然后得到關于和的等式,結合,討論出和的值,得到答案.【詳解】因為等比數(shù)列中首項,公比,所以成首項為,公比為的等比數(shù)列,共項,所以整理得因為所以可得,等式右邊為整數(shù),故等式左邊也需要為整數(shù),則應是的約數(shù),所以可得,所以,當時,得,此時當時,得,此時當時,得,此時,所以,故答案為:.【點睛】本題考查等比數(shù)列求和的基本量運算,涉及分類討論的思想,屬于中檔題.16、8【解析】
畫出滿足約束條件的可行域,利用目標函數(shù)的幾何意義求解最大值即可.【詳解】實數(shù),滿足條件的可行域如下圖所示:將目標函數(shù)變形為:,則要求的最大值,即使直線的截距最大,由圖可知,直線過點時截距最大,,故答案為:8.【點睛】本題考查線性規(guī)劃的簡單應用,解題關鍵是明確目標函數(shù)的幾何意義.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、或.【解析】
試題解析:(1)解得或即或(2)當時,當時,考點:本題考查求通項及求和點評:解決本題的關鍵是利用基本量法解題18、(1),(2),(3)至少經(jīng)過4年,進行技術改造的累計純利潤將超過不進行技術改造的累計純利潤.【解析】
(1)利用等差數(shù)列、等比數(shù)列的通項公式求和(2)是數(shù)列的前項和,是數(shù)列的前項和減去600,利用等差數(shù)列和等比數(shù)列的前項和公式求出即可(3)作差,利用函數(shù)的單調(diào)性,即可得出結論【詳解】(1)由題意得是等差數(shù)列,所以由題意得所以所以是首項為250,公比為的等比數(shù)列所以所以(2)是數(shù)列的前項和所以是數(shù)列的前項和減去600,所以(3)易得此函數(shù)當時單調(diào)遞增且時時所以至少經(jīng)過4年,進行技術改造的累計純利潤將超過不進行技術改造的累計純利潤.【點睛】本題考查的是數(shù)列的綜合知識,包含通項公式的求法、前n項和的求法及數(shù)列的單調(diào)性.19、(1);(2)【解析】
(1)直接利用任意角的三角函數(shù)的定義,求得的值.(2)利用誘導公式化簡所給的式子,再把代入,求得結果.【詳解】解:(1)因為角的終邊經(jīng)過點由三角函數(shù)的定義可知.(2)由(1)知,.【點睛】本題主要考查任意角的三角函數(shù)的定義,誘導公式,屬于基礎題.20、(1)或;(2).【解析】
(1)考慮切線的斜率是否存在,結合直線與圓相切的的條件d=r,直接求解圓的切線方程即可.(2)利用圓的圓心距、半徑及半弦長的關系,列出方程,求解a即可.【詳解】(1)由圓的方程得到圓心,半徑.當直線斜率不存在時,直線與圓顯然相切;當直線斜率存在時,設所求直線方程為,即,由題意得:,解得,∴方程為,即.故過點且與圓相切的直線方程為或.(2)∵弦長為,半徑為2.圓心到直線的距離,∴,解得.【點睛】本題考查直線與圓的位置關系的綜合應用,考查切線方程的求法,考查了垂徑定理的應用,考查計算能力.21、(Ⅰ);(Ⅱ)時,取得最大值2;時,取得最小值.【解析】
(Ⅰ)利用二倍角和兩角和與差以及輔助角公式將函數(shù)化為y=Asin(ωx+φ)的形式,利用三角函數(shù)的周期公式求函數(shù)的最小正周期.(Ⅱ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度太陽能光伏發(fā)電站項目進度控制與協(xié)調(diào)合同
- 二零二五版美容美發(fā)行業(yè)員工試用期勞動合同4篇
- 二零二五年度新型公私合作轉賬借款合同模板3篇
- 二零二五年度國有企業(yè)原材料采購合同補充協(xié)議范文3篇
- 二零二五年度影視MV拍攝制作與藝人肖像權合同
- 二零二五年度民政局離婚協(xié)議書修訂版解讀3篇
- 課題申報參考:民俗視域下江漢平原地區(qū)民歌音樂形態(tài)研究
- 二零二五年度農(nóng)業(yè)節(jié)水灌溉技術服務合同4篇
- 黑龍江省雙鴨山市高三上學期開學考試語文試題(含答案)
- 二零二五年度社區(qū)食堂運營管理合同4篇
- 再生障礙性貧血課件
- 產(chǎn)后抑郁癥的護理查房
- 2024年江蘇護理職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 電能質量與安全課件
- 醫(yī)藥營銷團隊建設與管理
- 工程項目設計工作管理方案及設計優(yōu)化措施
- 圍場滿族蒙古族自治縣金匯螢石開采有限公司三義號螢石礦礦山地質環(huán)境保護與土地復墾方案
- 小升初幼升小擇校畢業(yè)升學兒童簡歷
- 資金支付審批單
- 第一單元(金融知識進課堂)課件
- 介入導管室護士述職報告(5篇)
評論
0/150
提交評論