版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東省番禺區(qū)廣東第二師范學院番禺附中高一數(shù)學第二學期期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在各項均為正數(shù)的等比數(shù)列中,若,則()A.1 B.4C.2 D.2.已知函數(shù),若方程有5個解,則的取值范圍是()A. B. C. D.3.如圖,、兩點為山腳下兩處水平地面上的觀測點,在、兩處觀察點觀察山頂點的仰角分別為、若,,且觀察點、之間的距離為米,則山的高度為()A.米 B.米 C.米 D.米4.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.5.已知圓和兩點,,.若圓上存在點,使得,則的最小值為()A. B. C. D.6.已知函數(shù)f(x)=2x+log2x,且實數(shù)a>b>c>0,滿足A.x0<a B.x0>a7.在數(shù)列中,若,,,設(shè)數(shù)列滿足,則的前項和為()A. B. C. D.8.若,且,則“”是“函數(shù)有零點”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.某市新上了一批便民公共自行車,有綠色和橙黃色兩種顏色,且綠色公共自行車和橙黃色公共自行車的數(shù)量比為2∶1,現(xiàn)在按照分層抽樣的方法抽取36輛這樣的公共自行車放在某校門口,則其中綠色公共自行車的輛數(shù)是()A.8 B.12 C.16 D.2410.已知是定義在上不恒為的函數(shù),且對任意,有成立,,令,則有()A.為等差數(shù)列 B.為等比數(shù)列C.為等差數(shù)列 D.為等比數(shù)列二、填空題:本大題共6小題,每小題5分,共30分。11.已知不等式x2-x-a>0的解集為x|x>3或12.已知數(shù)列滿足,,,則__________.13.已知數(shù)列的前項和為,則其通項公式__________.14.若無窮等比數(shù)列的各項和等于,則的取值范圍是_____.15.過點,且與直線垂直的直線方程為.16.若A(-2,3),B(3,-2),C(4,m)三點共線則m的值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.等差數(shù)列中,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.18.如圖,在直三棱柱中,,,分別是,,的中點.(1)求證:平面;(2)若,求證:平面平面.19.已知函數(shù),(1)若,求a的值,并判斷的奇偶性;(2)求不等式的解集.20.如圖,直三棱柱中,點是棱的中點,點在棱上,已知,,(1)若點在棱上,且,求證:平面平面;(2)棱上是否存在一點,使得平面證明你的結(jié)論。21.近年來,鄭州經(jīng)濟快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢在同級別的城市內(nèi)無能出其右.為了調(diào)查鄭州市民對出行的滿意程度,研究人員隨機抽取了1000名市民進行調(diào)查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.(I)求的值;(Ⅱ)求被調(diào)查的市民的滿意程度的平均數(shù),眾數(shù),中位數(shù);(Ⅲ)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:由題意得,根據(jù)等比數(shù)列的性質(zhì)可知,又因為,故選C.考點:等比數(shù)列的性質(zhì).2、D【解析】
利用因式分解法,求出方程的解,結(jié)合函數(shù)的性質(zhì),根據(jù)題意可以求出的取值范圍.【詳解】,,或,由題意可知:,由題可知:當時,有2個解且有2個解且,當時,,因為,所以函數(shù)是偶函數(shù),當時,函數(shù)是減函數(shù),故有,函數(shù)是偶函數(shù),所以圖象關(guān)于縱軸對稱,即當時有,,所以,綜上所述;的取值范圍是,故本題選D.【點睛】本題考查了已知方程解的情況求參數(shù)取值問題,正確分析函數(shù)的性質(zhì),是解題的關(guān)鍵.3、A【解析】
過點作延長線于,根據(jù)三角函數(shù)關(guān)系解得高.【詳解】過點作延長線于,設(shè)山的高度為故答案選A【點睛】本題考查了三角函數(shù)的應用,屬于簡單題.4、D【解析】
由,,,得解.【詳解】解:因為,,,所以,故選:D.【點睛】本題考查了指數(shù)冪,對數(shù)值的大小關(guān)系,屬基礎(chǔ)題.5、D【解析】
因為,所以點的軌跡為以為直徑的圓,故點是兩圓的交點,根據(jù)圓與圓的位置關(guān)系,即可求出.【詳解】根據(jù)可知,點的軌跡為以為直徑的圓,故點是圓和圓的交點,因此兩圓相切或相交,即,亦即.故的最小值為.故選:D.【點睛】本題主要考查圓與圓的位置關(guān)系的應用,意在考查學生的轉(zhuǎn)化能力,屬于基礎(chǔ)題.6、D【解析】
由函數(shù)的單調(diào)性可得:當x0<c時,函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)【詳解】因為函數(shù)f(x)=2則函數(shù)y=f(x)在(0,+∞)為增函數(shù),又實數(shù)a>b>c>0,滿足f(a)f(b)f(c)<0,則f(a),f(b),f(c)為負數(shù)的個數(shù)為奇數(shù),對于選項A,B,C選項可能成立,對于選項D,當x0函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)<0,故選項D不可能成立,故選:D.【點睛】本題考查了函數(shù)的單調(diào)性,屬于中檔題.7、D【解析】
利用等差中項法得知數(shù)列為等差數(shù)列,根據(jù)已知條件可求出等差數(shù)列的首項與公差,由此可得出數(shù)列的通項公式,利用對數(shù)與指數(shù)的互化可得出數(shù)列的通項公式,并得知數(shù)列為等比數(shù)列,利用等比數(shù)列前項和公式可求出.【詳解】由可得,可知是首項為,公差為的等差數(shù)列,所以,即.由,可得,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,因此,數(shù)列的前項和為,故選D.【點睛】本題考查利用等差中項法判斷等差數(shù)列,同時也考查了對數(shù)與指數(shù)的互化以及等比數(shù)列的求和公式,解題的關(guān)鍵在于結(jié)合已知條件確定數(shù)列的類型,并求出數(shù)列的通項公式,考查運算求解能力,屬于中等題.8、A【解析】
結(jié)合函數(shù)零點的定義,利用充分條件和必要條件的定義進行判斷,即可得出答案.【詳解】由題意,當時,,函數(shù)與有交點,故函數(shù)有零點;當有零點時,不一定取,只要滿足都符合題意.所以“”是“函數(shù)有零點”的充分不必要條件.故答案為:A【點睛】本題主要考查了函數(shù)零點的概念,以及對數(shù)函數(shù)的圖象與性質(zhì)的應用,其中解答中熟記函數(shù)零點的定義,以及對數(shù)函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、D【解析】設(shè)放在該校門口的綠色公共自行車的輛數(shù)是x,則,解得x=1.故選D10、C【解析】令,得到得到,.,說明為等差數(shù)列,故C正確,根據(jù)選項,排除A,D.∵.顯然既不是等差也不是等比數(shù)列.故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】
由題意可知-2,3為方程x2【詳解】由題意可知-2,3為方程x2-x-a=0的兩根,則-2×3=-a,即故答案為:6【點睛】本題主要考查一元二次不等式的解,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.12、-2【解析】
根據(jù)題干中所給的表達式得到數(shù)列的周期性,進而得到結(jié)果.【詳解】根據(jù)題干表達式得到可以得數(shù)列具有周期性,周期為3,故得到故得到故答案為:-2.【點睛】這個題目考查了求數(shù)列中的某些項,一般方法是求出數(shù)列通項,對于數(shù)列通項不容易求的題目,可以列出數(shù)列的一些項,得到數(shù)列的周期或者一些其它規(guī)律,進而得到數(shù)列中的項.13、【解析】分析:先根據(jù)和項與通項關(guān)系得當時,,再檢驗,時,不滿足上述式子,所以結(jié)果用分段函數(shù)表示.詳解:∵已知數(shù)列的前項和,∴當時,,當時,,經(jīng)檢驗,時,不滿足上述式子,故數(shù)列的通項公式.點睛:給出與的遞推關(guān)系求,常用思路是:一是利用轉(zhuǎn)化為的遞推關(guān)系,再求其通項公式;二是轉(zhuǎn)化為的遞推關(guān)系,先求出與之間的關(guān)系,再求.應用關(guān)系式時,一定要注意分兩種情況,在求出結(jié)果后,看看這兩種情況能否整合在一起.14、.【解析】
根據(jù)題意可知,,從而得出,再由,即可求出的取值范圍.【詳解】解:由題意可知,,且,,,,或,故的取值范圍是,故答案為:.【點睛】本題主要考查等比數(shù)列的極限問題,解題時要熟練掌握無窮等比數(shù)列的極限和,屬于基礎(chǔ)題.15、【解析】
直線垂直表示斜率乘積為-1,所以可得新直線斜率,代入點即可.【詳解】直線的斜率等于-1,所以與之垂直直線斜率,再通過點斜式直線方程:,即.【點睛】此題考查直線垂直,直線垂直表示兩直線斜率之積為-1,屬于簡單題目.16、-3【解析】
根據(jù)三點共線與斜率的關(guān)系即可得出.【詳解】kAB=-2-33-(-2)=-1,k∵A(-2,3),B(3,-2),C(4,m)三點共線,∴﹣1=-3-m6,解得m=故答案為-3.【點睛】本題考查了三點共線與斜率的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)等差數(shù)列公式得到方程組,計算得到答案.(2)先求出,再利用裂項求和求得.【詳解】(1)等差數(shù)列中,,解得:(2)數(shù)列的前n項和.【點睛】本題考查了數(shù)列的通項公式,裂項求和,意在考查學生對于數(shù)列公式的靈活運用及計算能力.18、(1)詳見解析(2)詳見解析【解析】
(1)利用中位線定理可得∥,從而得證;(2)先證明,從而有平面,進而可得平面平面.【詳解】(1)因為分別是的中點,所以∥.因為平面,平面,所以∥平面.(2)在直三棱柱中,平面,因為平面,所以.因為,且是的中點,所以.因為,平面,所以平面.因為平面,所以平面平面.【點睛】垂直、平行關(guān)系證明中應用轉(zhuǎn)化與化歸思想的常見類型.(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(1),,是偶函數(shù)(2)或【解析】
(1)先由已知求出,然后結(jié)合利用定義法判斷函數(shù)的奇偶性即可;(2)討論當時,當時對數(shù)函數(shù)的單調(diào)性求解不等式即可.【詳解】解:(1)由題意得,,即,則,,則,函數(shù)的定義域為,則,是偶函數(shù);(2)當時,在上是減函數(shù),,,解得,所以原不等式的解集為;當時,在上是增函數(shù),,,即,所以原不等式的解集為,綜上所述,當時,原不等式的解集為,當時,原不等式的解集為.【點睛】本題考查了利用定義法判斷函數(shù)的奇偶性,主要考查了利用對數(shù)函數(shù)的單調(diào)性求解不等式,重點考查了分類討論的數(shù)學思想方法,屬中檔題.20、(1)見解析;(2)見解析【解析】
(1)通過證明,進而證明平面再證明平面平面;(2)取棱的中點,連接交于,結(jié)合三角形重心的性質(zhì)證明,從而證明平面.【詳解】(1)在直三棱柱中,由于平面,平面,所以平面平面.(或者得出)由于,是中點,所以.平面平面,平面,所以平面.而平面,于是.因為,,所以,所以.與相交,所以平面,平面所以平面平面(2)為棱的中點時,使得平面,證明:連接交于,連接.因為,為中線,所以為的重心,.從而.面,平面,所以平面【點睛】本題考查面面垂直的證明和線面平行的證明.面面垂直的證明要轉(zhuǎn)化為證明線面垂直,線面平行的證明要轉(zhuǎn)化為證明線線平行.21、(Ⅰ)(Ⅱ)平均數(shù)74.9,眾數(shù)75.14,中位數(shù)75;(Ш)【解析】
(I)根據(jù)頻率之和為列方程,結(jié)合求出的值.(II)利用各組中點值乘以頻率然后相加,求得平均數(shù).利用中位數(shù)是面積之和為的地方,列式求得中位數(shù).以頻率分布直方圖最高一組的中點作為中位數(shù).(III)先計算
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025【合同范本】最簡單雇傭合同范本
- 2025醫(yī)院水電工聘用合同
- 課題申報參考:六朝裝飾圖案研究
- 課題申報參考:客家文化中的時空分析研究
- 2024年現(xiàn)場總線智能儀表項目資金需求報告代可行性研究報告
- 藥品包裝設(shè)計與安全用藥的關(guān)聯(lián)性研究
- 2024年電動助力轉(zhuǎn)向裝置項目資金籌措計劃書代可行性研究報告
- 2024年直聯(lián)式真空泵項目投資申請報告代可行性研究報告
- 自然、舒適與健康-家居中如何挑選綠色地板
- 跨領(lǐng)域合作與創(chuàng)新思維的培養(yǎng)
- 2024年社區(qū)警務規(guī)范考試題庫
- 2024年食用牛脂項目可行性研究報告
- 2024-2030年中國戶外音箱行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- GB/T 30306-2024家用和類似用途飲用水處理濾芯
- 家務分工與責任保證書
- 消防安全隱患等級
- 溫室氣體(二氧化碳和甲烷)走航監(jiān)測技術(shù)規(guī)范
- 2023山東春季高考數(shù)學真題(含答案)
- 為加入燒火佬協(xié)會致辭(7篇)
- 職業(yè)衛(wèi)生法律法規(guī)和標準培訓課件
- 高二下學期英語閱讀提升練習(二)
評論
0/150
提交評論