四川省宜賓市第三中學2025屆高一數(shù)學第二學期期末經典試題含解析_第1頁
四川省宜賓市第三中學2025屆高一數(shù)學第二學期期末經典試題含解析_第2頁
四川省宜賓市第三中學2025屆高一數(shù)學第二學期期末經典試題含解析_第3頁
四川省宜賓市第三中學2025屆高一數(shù)學第二學期期末經典試題含解析_第4頁
四川省宜賓市第三中學2025屆高一數(shù)學第二學期期末經典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省宜賓市第三中學2025屆高一數(shù)學第二學期期末經典試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某學校的A,B,C三個社團分別有學生人,人,人,若采用分層抽樣的方法從三個社團中共抽取人參加某項活動,則從A社團中應抽取的學生人數(shù)為()A.2 B.4 C.5 D.62.設等差數(shù)列,則等于()A.120 B.60 C.54 D.1083.將函數(shù)圖像上的每一個點的橫坐標縮短為原來的一半,縱坐標不變,再將所得圖像向左平移個單位得到數(shù)學函數(shù)的圖像,在圖像的所有對稱軸中,離原點最近的對稱軸為()A. B. C. D.4.點直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或5.下列函數(shù)中,值域為的是()A. B. C. D.6.將函數(shù)的圖象上各點沿軸向右平移個單位長度,所得函數(shù)圖象的一個對稱中心為()A. B. C. D.7.已知兩點,若點是圓上的動點,則面積的最大值為()A.13 B.3 C. D.8.不等式的解集是:A. B.C. D.9.已知兩個非零向量,滿足,則()A. B.C. D.10.直線與平行,則的值為()A. B.或 C.0 D.-2或0二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在內有一系列的正方形,它們的邊長依次為,若,,則所有正方形的面積的和為___________.12.在中,分別是角的對邊,,且的周長為5,面積,則=______13.某學校成立了數(shù)學,英語,音樂3個課外興趣小組,3個小組分別有39,32,33個成員,一些成員參加了不止一個小組,具體情況如圖.現(xiàn)隨機選取一個成員,他恰好只屬于2個小組的概率是____.14.終邊經過點,則_____________15.甲、乙兩名射擊運動員進行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.7,現(xiàn)兩人各自獨立射擊一次,均中靶的概率為______.16.數(shù)列{}的前項和為,若,則{}的前2019項和____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在△ABC中,角A,B,C所對的邊分別為a,b,c.已知b2(Ⅰ)求A的大?。唬á颍┤绻鹀osB=6318.如圖所示,在直三棱柱中,,,M、N分別為、的中點.求證:平面;求證:平面.19.已知向量=,=,=,為坐標原點.(1)若△為直角三角形,且∠為直角,求實數(shù)的值;(2)若點、、能構成三角形,求實數(shù)應滿足的條件.20.在平面直角坐標系下,已知圓O:,直線l:()與圓O相交于A,B兩點,且.(1)求直線l的方程;(2)若點E,F(xiàn)分別是圓O與x軸的左、右兩個交點,點D滿足,點M是圓O上任意一點,點N在線段上,且存在常數(shù)使得,求點N到直線l距離的最小值.21.在銳角三角形中,分別是角的對邊,且.(1)求角的大小;(2)若,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

分層抽樣每部分占比一樣,通過A,B,C三個社團為,易得A中的人數(shù)。【詳解】A,B,C三個社團人數(shù)比為,所以12中A有人,B有人,C有人。故選:B【點睛】此題考查分層抽樣原理,根據(jù)抽樣前后每部分占比一樣求解即可,屬于簡單題目。2、C【解析】

題干中只有一個等式,要求前9項的和,可利用等差數(shù)列的性質解決?!驹斀狻浚xC.【點睛】題干中只有一個等式,要求前9項的和,可利用等差數(shù)列的性質解決。也可將等式全部化為的表達式,整體代換計算出3、A【解析】分析:根據(jù)平移變換可得,根據(jù)放縮變換可得函數(shù)的解析式,結合對稱軸方程求解即可.詳解:將函數(shù)的圖象上的每個點的橫坐標縮短為原來的一半,縱坐標不變,得到,再將所得圖象向左平移個單位得到函數(shù)的圖象,即,由,得,當時,離原點最近的對稱軸方程為,故選A.點睛:本題主要考查三角函數(shù)的圖象與性質,屬于中檔題.由函數(shù)可求得函數(shù)的周期為;由可得對稱軸方程;由可得對稱中心橫坐標.4、C【解析】

直線經過定點,斜率為,數(shù)形結合利用直線的斜率公式,求得實數(shù)的取值范圍,得到答案.【詳解】如圖所示,直線經過定點,斜率為,當直線經過點時,則,當直線經過點時,則,所以實數(shù)的取值范圍,故選C.【點睛】本題主要考查了直線過定點問題,以及直線的斜率公式的應用,著重考查了數(shù)形結合法,以及推理與運算能力,屬于基礎題.5、B【解析】

依次判斷各個函數(shù)的值域,從而得到結果.【詳解】選項:值域為,錯誤選項:值域為,正確選項:值域為,錯誤選項:值域為,錯誤本題正確選項:【點睛】本題考查初等函數(shù)的值域問題,屬于基礎題.6、A【解析】

先求得圖象變換后的解析式,再根據(jù)正弦函數(shù)對稱中心,求出正確選項.【詳解】向右平移的單位長度,得到,由解得,當時,對稱中心為,故選A.【點睛】本小題主要考查三角函數(shù)圖象變換,考查三角函數(shù)對稱中心的求法,屬于基礎題.7、C【解析】

先求出直線方程,然后計算出圓心到直線的距離,根據(jù)面積的最大時,以及高最大的條件,可得結果.【詳解】由,利用直線的截距式所以直線方程為:即由圓,即所以圓心為,半徑為則圓心到直線的距離為要使面積的最大,則圓上的點到最大距離為所以面積的最大值為故選:C【點睛】本題考查圓與直線的幾何關系以及點到直線的距離,屬基礎題.8、C【解析】

把不等式轉化為不等式,即可求解,得到答案.【詳解】由題意,不等式,等價于,解得,即不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的求解,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、C【解析】

根據(jù)向量的模的計算公式,由逐步轉化為,即可得到本題答案.【詳解】由題,得,即,,則,所以.故選:C.【點睛】本題主要考查平面向量垂直的等價條件以及向量的模,化簡變形是關鍵,考查計算能力,屬于基礎題.10、A【解析】

若直線與平行,則,解出a值后,驗證兩條直線是否重合,可得答案.【詳解】若直線與平行,

則,

解得或,

又時,直線與表示同一條直線,

故,

故選A.本題考查的知識點是直線的一般式方程,直線的平行關系,正確理解直線平行的幾何意義是解答的關鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)題意可知,可得,依次計算,,不難發(fā)現(xiàn):邊長依次為,,,,構成是公比為的等比數(shù)列,正方形的面積:依次,,不難發(fā)現(xiàn):邊長依次為,,,,正方形的面積構成是公比為的等比數(shù)列.利用無窮等比數(shù)列的和公式可得所有正方形的面積的和.【詳解】根據(jù)題意可知,可得,依次計算,,是公比為的等比數(shù)列,正方形的面積:依次,,邊長依次為,,,,正方形的面積構成是公比為的等比數(shù)列.所有正方形的面積的和.故答案為:【點睛】本題考查了無窮等比數(shù)列的和公式的運用.利用邊長關系建立等式,找到公比是解題的關鍵.屬于中檔題.12、【解析】

令正弦定理化簡已知等式,得到,代入題設,求得的長,利用三角形的面積公式表示出的面積,代入已知等式,再將,即可求解.【詳解】在中,因為,由正弦定理,可得,因為的周長為5,即,所以,又因為,即,所以.【點睛】本題主要考查了正弦定理和三角形的面積公式的應用,其中在解有關三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.13、【解析】

由題中數(shù)據(jù),確定課外小組的總人數(shù),以及恰好屬于2個小組的人數(shù),人數(shù)比即為所求概率.【詳解】由題意可得,課外小組的總人數(shù)為,恰好屬于2個小組的人數(shù)為,所以隨機選取一個成員,他恰好只屬于2個小組的概率是.故答案為【點睛】本題主要考查古典概型,熟記列舉法求古典概型的概率即可,屬于??碱}型.14、【解析】

根據(jù)正弦值的定義,求得正弦值.【詳解】依題意.故答案為:【點睛】本小題主要考查根據(jù)角的終邊上一點的坐標求正弦值,屬于基礎題.15、0.56【解析】

根據(jù)在一次射擊中,甲、乙同時射中目標是相互獨立的,利用相互獨立事件的概率乘法公式,即可求解.【詳解】由題意,甲的中靶概率為0.8,乙的中靶概率為0.7,所以兩人均中靶的概率為,故答案為0.56【點睛】本題主要考查了相互獨立事件的概率乘法公式的應用,其中解答中合理利用相互獨立的概率乘法公式求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、1009【解析】

根據(jù)周期性,對2019項進行分類計算,可得結果?!驹斀狻拷猓焊鶕?jù)題意,的值以為循環(huán)周期,=1009故答案為:1009.【點睛】本題考查了周期性在數(shù)列中的應用,屬于中檔題。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)π3;(2)3【解析】試題分析:(1)先根據(jù)條件b2+c2=a2+bc結合余弦定理求出cosA試題解析:(1)因為b2所以cosA=又因為A∈(0,π),所以A=π(2)解:因為cosB=63所以sinB=由正弦定理asin得.考點:1.正弦定理與余弦定理;2.同角三角函數(shù)的基本關系18、(1)見解析;(2)見解析.【解析】

(1)推導出,從而平面,進而,再由,,得是正方形,由此能證明平面.取的中點F,連BF、推導出四邊形BMNF是平行四邊形,從而,由此能證明平面.【詳解】證明:在直三棱柱中,側面底面ABC,且側面底面,,即,平面,平面,,,是正方形,,平面取的中點F,連BF、在中,N、F是中點,,,又,,,,故四邊形BMNF是平行四邊形,,而面,平面,平面【點睛】本題考查線面垂直、線面平行的證明,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.19、(1);(2)【解析】

(1)利用向量的運算法則求出,,再利用向量垂直的充要條件列出方程求出m;(2)由題意得A,B,C三點不共線,則與不共線,列出關于m的不等式即可.【詳解】(1)因為=,=,=,所以,,若△ABC為直角三角形,且∠A為直角,則,∴3(2﹣m)+(1﹣m)=0,解得.(2)若點A,B,C能構成三角形,則這三點不共線,即與不共線,得3(1﹣m)≠2﹣m,∴實數(shù)時,滿足條件.【點睛】本題考查向量垂直、向量共線的充要條件、利用向量共線解決三點共線、三點不共線等問題,屬于基礎題.20、(1);(2).【解析】

(1)等價于圓心O到直線l的距離,再由點到直線的距離公式求解即可;(2)先設點,再結合題意可得點N在以為圓心,半徑為的圓R上,再結合點到直線的距離公式求解即可.【詳解】解:(1)∵圓O:,圓心,半徑,∵直線l:()與圓O相交于A,B兩點,且,∴圓心O到直線l的距離,又,,解得,∴直線l的方程為;(2)∵點E,F(xiàn)分別是圓O與x軸的左、右兩個交點,,∴,,設,,則,,,,,即.又∵點N在線段上,即,共線,,,∵點M是圓O上任意一點,,∴將m,n代入上式,可得,即.則點N在以為圓心,半徑為的圓R上.圓心R到直線l:的距離,又,故點N到直線l:距離的最小值為1.【點睛】本題考查了點到直線的距離公式,重點考查了點的軌跡方程的求法,屬中檔題.21、(1);(2)【解析】

(1)利用正弦定理邊化角,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論