2024屆湖北省黃梅縣中考押題數(shù)學(xué)預(yù)測卷含解析_第1頁
2024屆湖北省黃梅縣中考押題數(shù)學(xué)預(yù)測卷含解析_第2頁
2024屆湖北省黃梅縣中考押題數(shù)學(xué)預(yù)測卷含解析_第3頁
2024屆湖北省黃梅縣中考押題數(shù)學(xué)預(yù)測卷含解析_第4頁
2024屆湖北省黃梅縣中考押題數(shù)學(xué)預(yù)測卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆湖北省黃梅縣中考押題數(shù)學(xué)預(yù)測卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,直線l是一次函數(shù)y=kx+b的圖象,若點A(3,m)在直線l上,則m的值是()A.﹣5 B. C. D.72.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.3.如圖,點A是反比例函數(shù)y=的圖象上的一點,過點A作AB⊥x軸,垂足為B.點C為y軸上的一點,連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣64.在體育課上,甲,乙兩名同學(xué)分別進行了5次跳遠(yuǎn)測試,經(jīng)計算他們的平均成績相同.若要比較這兩名同學(xué)的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差5.兩個一次函數(shù),,它們在同一直角坐標(biāo)系中的圖象大致是()A. B. C. D.6.據(jù)統(tǒng)計,2018年全國春節(jié)運輸人數(shù)約為3000000000人,將3000000000用科學(xué)記數(shù)法表示為()A.0.3×1010B.3×109C.30×108D.300×1077.已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點B逆時針旋轉(zhuǎn),使ON邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點C逆時針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn);……在這樣連續(xù)6次旋轉(zhuǎn)的過程中,點B,O間的距離不可能是()A.0 B.0.8 C.2.5 D.3.48.已知,C是線段AB的黃金分割點,AC<BC,若AB=2,則BC=()A.3﹣ B.(+1) C.﹣1 D.(﹣1)9.如圖所示的幾何體,它的左視圖是()A. B. C. D.10.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.11.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.有一個實數(shù)根 D.無實數(shù)根12.明明和亮亮都在同一直道A、B兩地間做勻速往返走鍛煉明明的速度小于亮亮的速度忽略掉頭等時間明明從A地出發(fā),同時亮亮從B地出發(fā)圖中的折線段表示從開始到第二次相遇止,兩人之間的距離米與行走時間分的函數(shù)關(guān)系的圖象,則A.明明的速度是80米分 B.第二次相遇時距離B地800米C.出發(fā)25分時兩人第一次相遇 D.出發(fā)35分時兩人相距2000米二、填空題:(本大題共6個小題,每小題4分,共24分.)13.李明早上騎自行車上學(xué),中途因道路施工推車步行了一段路,到學(xué)校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學(xué)校的路程是2900米,設(shè)他推車步行的時間為x分鐘,那么可列出的方程是_____________.14.8的算術(shù)平方根是_____.15.如圖,直線a∥b,∠l=60°,∠2=40°,則∠3=_____.16.一個斜面的坡度i=1:0.75,如果一個物體從斜面的底部沿著斜面方向前進了20米,那么這個物體在水平方向上前進了_____米.17.因式分解:a3﹣2a2b+ab2=_____.18.一個不透明的袋子中裝有三個小球,它們除分別標(biāo)有的數(shù)字1,3,5不同外,其他完全相同.從袋子中任意摸出一球后放回,再任意摸出一球,則兩次摸出的球所標(biāo)數(shù)字之和為8的概率是__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)十八屆五中全會出臺了全面實施一對夫婦可生育兩個孩子的政策,這是黨中央站在中華民族長遠(yuǎn)發(fā)展的戰(zhàn)略高度作出的促進人口長期均衡發(fā)展的重大舉措.二孩政策出臺后,某家庭積極響應(yīng)政府號召,準(zhǔn)備生育兩個小孩(假設(shè)生男生女機會均等,且與順序無關(guān)).(1)該家庭生育兩胎,假設(shè)每胎都生育一個小孩,求這兩個小孩恰好都是女孩的概率;(2)該家庭生育兩胎,假設(shè)第一胎生育一個小孩,且第二胎生育一對雙胞胎,求這三個小孩中恰好是2女1男的概率.20.(6分)先化簡,再求值:,其中,.21.(6分)規(guī)定:不相交的兩個函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.22.(8分)某商場同時購進甲、乙兩種商品共100件,其進價和售價如下表:商品名稱甲乙進價(元/件)4090售價(元/件)60120設(shè)其中甲種商品購進x件,商場售完這100件商品的總利潤為y元.寫出y關(guān)于x的函數(shù)關(guān)系式;該商場計劃最多投入8000元用于購買這兩種商品,①至少要購進多少件甲商品?②若銷售完這些商品,則商場可獲得的最大利潤是多少元?23.(8分)如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.求該拋物線的表達式;點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標(biāo)為t.①當(dāng)點P在直線BC的下方運動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.24.(10分)綜合與實踐﹣﹣旋轉(zhuǎn)中的數(shù)學(xué)問題背景:在一次綜合實踐活動課上,同學(xué)們以兩個矩形為對象,研究相似矩形旋轉(zhuǎn)中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對角線的交點重合于點O,連接AA′,CC′.請你幫他們解決下列問題:觀察發(fā)現(xiàn):(1)如圖1,若A′B′∥AB,則AA′與CC′的數(shù)量關(guān)系是______;操作探究:(2)將圖1中的矩形ABCD保持不動,矩形A′B′C′D′繞點O逆時針旋轉(zhuǎn)角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉(zhuǎn)的過程中,(1)中的結(jié)論還成立嗎?若成立,請證明;若不成立,請說明理由;操作計算:(3)如圖3,在(2)的條件下,當(dāng)矩形A′B′C′D′繞點O旋轉(zhuǎn)至AA′⊥A′D′時,若AB=6,BC=8,A′B′=3,求AA′的長.25.(10分)已知,平面直角坐標(biāo)系中的點A(a,1),t=ab﹣a2﹣b2(a,b是實數(shù))(1)若關(guān)于x的反比例函數(shù)y=過點A,求t的取值范圍.(2)若關(guān)于x的一次函數(shù)y=bx過點A,求t的取值范圍.(3)若關(guān)于x的二次函數(shù)y=x2+bx+b2過點A,求t的取值范圍.26.(12分)現(xiàn)有四張分別標(biāo)有數(shù)字1、2、2、3的卡片,他們除數(shù)字外完全相同.把卡片背面朝上洗勻,從中隨機抽出一張后放回,再背朝上洗勻,從中隨機抽出一張,則兩次抽出的卡片所標(biāo)數(shù)字不同的概率()A. B. C. D.27.(12分)計算﹣14﹣

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

把(-2,0)和(0,1)代入y=kx+b,求出解析式,再將A(3,m)代入,可求得m.【詳解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函數(shù)解析式y(tǒng)=x+1,再將A(3,m)代入,得m=×3+1=.故選C.【點睛】本題考核知識點:考查了待定系數(shù)法求一次函數(shù)的解析式,根據(jù)解析式再求函數(shù)值.2、B【解析】

首先證明△ABF≌△DEA得到BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.3、D【解析】試題分析:連結(jié)OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點:反比例函數(shù)系數(shù)k的幾何意義.4、D【解析】

方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好?!驹斀狻坑捎诜讲钅芊从硵?shù)據(jù)的穩(wěn)定性,需要比較這兩名學(xué)生立定跳遠(yuǎn)成績的方差.故選D.5、B【解析】

根據(jù)各選項中的函數(shù)圖象判斷出a、b的符號,然后分別確定出兩直線經(jīng)過的象限以及與y軸的交點位置,即可得解.【詳解】解:由圖可知,A、B、C選項兩直線一條經(jīng)過第一三象限,另一條經(jīng)過第二四象限,

所以,a、b異號,

所以,經(jīng)過第一三象限的直線與y軸負(fù)半軸相交,經(jīng)過第二四象限的直線與y軸正半軸相交,

B選項符合,

D選項,a、b都經(jīng)過第二、四象限,

所以,兩直線都與y軸負(fù)半軸相交,不符合.

故選:B.【點睛】本題考查了一次函數(shù)的圖象,一次函數(shù)y=kx+b(k≠0),k>0時,一次函數(shù)圖象經(jīng)過第一三象限,k<0時,一次函數(shù)圖象經(jīng)過第二四象限,b>0時與y軸正半軸相交,b<0時與y軸負(fù)半軸相交.6、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).【詳解】解:根據(jù)科學(xué)計數(shù)法的定義可得,3000000000=3×109,故選擇B.【點睛】本題考查了科學(xué)計數(shù)法的定義,確定n的值是易錯點.7、D【解析】

如圖,點O的運動軌跡是圖在黃線,點B,O間的距離d的最小值為0,最大值為線段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判斷;【詳解】如圖,點O的運動軌跡是圖在黃線,作CH⊥BD于點H,∵六邊形ABCDE是正六邊形,∴∠BCD=120o,∴∠CBH=30o,∴BH=cos30o·BC=,∴BD=.∵DK=,∴BK=,點B,O間的距離d的最小值為0,最大值為線段BK=,∴0≤d≤,即0≤d≤3.1,故點B,O間的距離不可能是3.4,故選:D.【點睛】本題考查正多邊形與圓、旋轉(zhuǎn)變換等知識,解題的關(guān)鍵是正確作出點O的運動軌跡,求出點B,O間的距離的最小值以及最大值是解答本題的關(guān)鍵.8、C【解析】

根據(jù)黃金分割點的定義,知BC為較長線段;則BC=AB,代入數(shù)據(jù)即可得出BC的值.【詳解】解:由于C為線段AB=2的黃金分割點,且AC<BC,BC為較長線段;

則BC=2×=-1.

故答案為:-1.【點睛】本題考查了黃金分割,應(yīng)該識記黃金分割的公式:較短的線段=原線段的倍,較長的線段=原線段的倍.9、A【解析】

從左面觀察幾何體,能夠看到的線用實線,看不到的線用虛線.【詳解】從左邊看是等寬的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,

故選:A.【點睛】本題主要考查的是幾何體的三視圖,熟練掌握三視圖的畫法是解題的關(guān)鍵.10、A【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.11、B【解析】一元二次方程的根的情況與根的判別式有關(guān),,方程有兩個不相等的實數(shù)根,故選B12、B【解析】

C、由二者第二次相遇的時間結(jié)合兩次相遇分別走過的路程,即可得出第一次相遇的時間,進而得出C選項錯誤;A、當(dāng)時,出現(xiàn)拐點,顯然此時亮亮到達A地,利用速度路程時間可求出亮亮的速度及兩人的速度和,二者做差后可得出明明的速度,進而得出A選項錯誤;B、根據(jù)第二次相遇時距離B地的距離明明的速度第二次相遇的時間、B兩地間的距離,即可求出第二次相遇時距離B地800米,B選項正確;D、觀察函數(shù)圖象,可知:出發(fā)35分鐘時亮亮到達A地,根據(jù)出發(fā)35分鐘時兩人間的距離明明的速度出發(fā)時間,即可求出出發(fā)35分鐘時兩人間的距離為2100米,D選項錯誤.【詳解】解:第一次相遇兩人共走了2800米,第二次相遇兩人共走了米,且二者速度不變,

出發(fā)20分時兩人第一次相遇,C選項錯誤;

亮亮的速度為米分,

兩人的速度和為米分,

明明的速度為米分,A選項錯誤;

第二次相遇時距離B地距離為米,B選項正確;

出發(fā)35分鐘時兩人間的距離為米,D選項錯誤.

故選:B.【點睛】本題考查了一次函數(shù)的應(yīng)用,觀察函數(shù)圖象,逐一分析四個選項的正誤是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:根據(jù)題意把李明步行和騎車各自所走路程表達出來,再結(jié)合步行和騎車所走總里程為2900米,列出方程即可.詳解:設(shè)他推車步行的時間為x分鐘,根據(jù)題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關(guān)系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關(guān)鍵.14、2.【解析】試題分析:本題主要考查的是算術(shù)平方根的定義,掌握算術(shù)平方根的定義是解題的關(guān)鍵.依據(jù)算術(shù)平方根的定義回答即可.由算術(shù)平方根的定義可知:8的算術(shù)平方根是,∵=2,∴8的算術(shù)平方根是2.故答案為2.考點:算術(shù)平方根.15、80°【解析】

根據(jù)平行線的性質(zhì)求出∠4,根據(jù)三角形內(nèi)角和定理計算即可.【詳解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案為:80°.【點睛】本題考查的是平行線的性質(zhì)、三角形內(nèi)角和定理,掌握兩直線平行,同位角相等是解題的關(guān)鍵.16、1.【解析】

直接根據(jù)題意得出直角邊的比值,即可表示出各邊長進而得出答案.【詳解】如圖所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴設(shè)AC=4x,則BC=3x,∴AB==5x,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故這個物體在水平方向上前進了1m.故答案為:1.【點睛】此題主要考查坡度的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關(guān)系是.17、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式進行分解即可.【詳解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案為a(a﹣b)1.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.18、【解析】

根據(jù)題意列出表格或樹狀圖即可解答.【詳解】解:根據(jù)題意畫出樹狀圖如下:總共有9種情況,其中兩個數(shù)字之和為8的有2種情況,∴,故答案為:.【點睛】本題考查了概率的求解,解題的關(guān)鍵是畫出樹狀圖或列出表格,并熟記概率的計算公式.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)P(兩個小孩都是女孩)=;(2)P(三個小孩中恰好是2女1男)=.【解析】

(1)畫出樹狀圖即可解題,(2)畫出樹狀圖即可解題.【詳解】(1)畫樹狀圖如下:由樹狀圖可知,生育兩胎共有4種等可能結(jié)果,而這兩個小孩恰好都是女孩的有1種可能,∴P(兩個小孩都是女孩)=.(2)畫樹狀圖如下:由樹狀圖可知,生育兩胎共有8種等可能結(jié)果,其中這三個小孩中恰好是2女1男的有3種結(jié)果,∴P(三個小孩中恰好是2女1男)=.【點睛】本題考查了畫樹狀圖求解概率,中等難度,畫出樹狀圖找到所有可能性是解題關(guān)鍵.20、9【解析】

根據(jù)完全平方公式、平方差公式、單項式乘多項式可以化簡題目中的式子,然后將x、y的值代入化簡后的式子即可解答本題.【詳解】當(dāng),時,原式【點睛】本題考查整式的化簡求值,解答本題的關(guān)鍵是明確整式化簡求值的方法.21、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進行判斷;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當(dāng)t=時,PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點向x軸作垂線與直線相交,拋物線頂點與交點之間的距離為2,∴不同意他的看法;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當(dāng)t=時,MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【點睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點的坐標(biāo)特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關(guān)鍵.22、(Ⅰ);(Ⅱ)①至少要購進20件甲商品;②售完這些商品,則商場可獲得的最大利潤是2800元.【解析】

(Ⅰ)根據(jù)總利潤=(甲的售價-甲的進價)×甲的進貨數(shù)量+(乙的售價-乙的進價)×乙的進貨數(shù)量列關(guān)系式并化簡即可得答案;(Ⅱ)①根據(jù)總成本最多投入8000元列不等式即可求出x的范圍,即可得答案;②根據(jù)一次函數(shù)的增減性確定其最大值即可.【詳解】(Ⅰ)根據(jù)題意得:則y與x的函數(shù)關(guān)系式為.(Ⅱ),解得.∴至少要購進20件甲商品.,∵,∴y隨著x的增大而減小∴當(dāng)時,有最大值,.∴若售完這些商品,則商場可獲得的最大利潤是2800元.【點睛】本題考查一次函數(shù)的實際應(yīng)用及一元一次不等式的應(yīng)用,熟練掌握一次函數(shù)的性質(zhì)是解題關(guān)鍵.23、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標(biāo)為P(﹣,﹣)或(0,5).【解析】

(1)將點A、B坐標(biāo)代入二次函數(shù)表達式,即可求出二次函數(shù)解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標(biāo)代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1,設(shè)點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設(shè)直線BP與CD交于點H,當(dāng)點P在直線BC下方時,求出線段BC的中點坐標(biāo)為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當(dāng)點P(P′)在直線BC上方時,根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點A、B坐標(biāo)代入二次函數(shù)表達式得:,解得:,故拋物線的表達式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點C(﹣1,0);(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標(biāo)代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1…②,設(shè)點G(t,t+1),則點P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當(dāng)t=﹣時,其最大值為;②設(shè)直線BP與CD交于點H,當(dāng)點P在直線BC下方時,∵∠PBC=∠BCD,∴點H在BC的中垂線上,線段BC的中點坐標(biāo)為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,設(shè)BC中垂線的表達式為:y=﹣x+m,將點(﹣,﹣)代入上式并解得:直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯(lián)立①⑤并解得:x=﹣或﹣4(舍去﹣4),故點P(﹣,﹣);當(dāng)點P(P′)在直線BC上方時,∵∠PBC=∠BCD,∴BP′∥CD,則直線BP′的表達式為:y=2x+s,將點B坐標(biāo)代入上式并解得:s=5,即直線BP′的表達式為:y=2x+5…⑥,聯(lián)立①⑥并解得:x=0或﹣4(舍去﹣4),故點P(0,5);故點P的坐標(biāo)為P(﹣,﹣)或(0,5).【點睛】本題考查的是二次函數(shù),熟練掌握拋物線的性質(zhì)是解題的關(guān)鍵.24、(1)AA′=CC′;(2)成立,證明見解析;(3)AA′=【解析】

(1)連接AC、A′C′,根據(jù)題意得到點A、A′、C′、C在同一條直線上,根據(jù)矩形的性質(zhì)得到OA=OC,OA′=OC′,得到答案;(2)連接AC、A′C′,證明△A′OA≌△C′OC,根據(jù)全等三角形的性質(zhì)證明;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,根據(jù)相似多邊形的性質(zhì)求出B′C′,根據(jù)勾股定理計算即可.【詳解】(1)AA′=CC′,理由如下:連接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴點A、A′、C′、C在同一條直線上,由矩形的性質(zhì)可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案為AA′=CC′;(2)(1)中的結(jié)論還成立,AA′=CC′,理由如下:連接AC、A′C′,則AC、A′C′都經(jīng)過點O,由旋轉(zhuǎn)的性質(zhì)可知,∠A′OA=∠C′OC,∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論