廣西來賓市達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷及答案解析_第1頁
廣西來賓市達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷及答案解析_第2頁
廣西來賓市達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷及答案解析_第3頁
廣西來賓市達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷及答案解析_第4頁
廣西來賓市達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷及答案解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣西來賓市達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.我國古代數(shù)學(xué)著作《孫子算經(jīng)》中有“多人共車”問題:今有三人共車,二車空;二人共車,九人步.問人與車各幾何?其大意是:每車坐3人,兩車空出來;每車坐2人,多出9人無車坐.問人數(shù)和車數(shù)各多少?設(shè)車輛,根據(jù)題意,可列出的方程是().A. B.C. D.2.如圖,在6×4的正方形網(wǎng)格中,△ABC的頂點均為格點,則sin∠ACB=()A. B.2 C. D.3.如圖,平行四邊形ABCD的頂點A、B、D在⊙O上,頂點C在⊙O直徑BE上,連結(jié)AE,若∠E=36°,則∠ADC的度數(shù)是()A.44° B.53° C.72° D.54°4.如圖,O是坐標(biāo)原點,菱形OABC的頂點A的坐標(biāo)為(﹣3,﹣4),頂點C在x軸的負(fù)半軸上,函數(shù)y=(x<0)的圖象經(jīng)過菱形OABC中心E點,則k的值為()A.6 B.8 C.10 D.125.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長為4的正方形ABCD的邊AB在x軸上,AB的中點是坐標(biāo)原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D′處,則點C的對應(yīng)點C′的坐標(biāo)為()A.(,2) B.(4,1) C.(4,) D.(4,)6.如圖是由五個相同的小立方塊搭成的幾何體,則它的俯視圖是()A. B. C. D.7.如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知甲的路線為:A→C→B;乙的路線為:A→D→E→F→B,其中E為AB的中點;丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.若符號[→]表示[直線前進(jìn)],則根據(jù)圖1、圖2、圖3的數(shù)據(jù),判斷三人行進(jìn)路線長度的大小關(guān)系為()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲8.計算4×(–9)的結(jié)果等于A.32 B.–32 C.36 D.–369.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.7210.等腰三角形的一個外角是100°,則它的頂角的度數(shù)為()A.80° B.80°或50° C.20° D.80°或20°二、填空題(共7小題,每小題3分,滿分21分)11.以下兩題任選一題作答:(1).下圖是某商場一樓二樓之間的手扶電梯示意圖,其中AB、CD分別表示一樓、二樓地面的水平,∠ABC=150°,BC的長是8m,則乘電梯次點B到點C上升的高度h是_____m.(2).一個多邊形的每一個內(nèi)角都是與它相鄰?fù)饨堑?倍,則多邊形是_____邊形.12.如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點O是坐標(biāo)原點,點A的坐標(biāo)(6,0),B的坐標(biāo)(0,8),點C的坐標(biāo)(﹣2,4),點M,N分別為四邊形OABC邊上的動點,動點M從點O開始,以每秒1個單位長度的速度沿O→A→B路線向終點B勻速運(yùn)動,動點N從O點開始,以每秒2個單位長度的速度沿O→C→B→A路線向終點A勻速運(yùn)動,點M,N同時從O點出發(fā),當(dāng)其中一點到達(dá)終點后,另一點也隨之停止運(yùn)動,設(shè)動點運(yùn)動的時間為t秒(t>0),△OMN的面積為S.則:AB的長是_____,BC的長是_____,當(dāng)t=3時,S的值是_____.13.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內(nèi)部的點F處.若∠CBF=25°,則∠FDA的度數(shù)為_________.14.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.15.如圖,在平面直角坐標(biāo)系xOy中,A(-2,0),B(0,2),⊙O的半徑為1,點C為⊙O上一動點,過點B作BP⊥直線AC,垂足為點P,則P點縱坐標(biāo)的最大值為cm.16.若一個多邊形的每一個外角都等于40°,則這個多邊形的內(nèi)角和是_____.17.計算的結(jié)果為_____.三、解答題(共7小題,滿分69分)18.(10分)已知,拋物線的頂點為,它與軸交于點,(點在點左側(cè)).()求點、點的坐標(biāo);()將這個拋物線的圖象沿軸翻折,得到一個新拋物線,這個新拋物線與直線交于點.①求證:點是這個新拋物線與直線的唯一交點;②將新拋物線位于軸上方的部分記為,將圖象以每秒個單位的速度向右平移,同時也將直線以每秒個單位的速度向上平移,記運(yùn)動時間為,請直接寫出圖象與直線有公共點時運(yùn)動時間的范圍.19.(5分)已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯(lián)結(jié).(1)若C是半徑OB中點,求的正弦值;(2)若E是弧AB的中點,求證:;(3)聯(lián)結(jié)CE,當(dāng)△DCE是以CD為腰的等腰三角形時,求CD的長.20.(8分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達(dá)式;(2)求∠ACB的度數(shù);(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時,求點D的坐標(biāo).21.(10分)某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結(jié)構(gòu)總經(jīng)理部門經(jīng)理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內(nèi)容,解答下列問題:該公司“高級技工”有名;所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;小張到這家公司應(yīng)聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實際水平更合理些;去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實際水平.22.(10分)如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.23.(12分)如圖,在△ABC中,∠B=∠C=40°,點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運(yùn)動,到達(dá)C點、B點后運(yùn)動停止.求證:△ABE≌△ACD;若AB=BE,求∠DAE的度數(shù);拓展:若△ABD的外心在其內(nèi)部時,求∠BDA的取值范圍.24.(14分)某社區(qū)活動中心為鼓勵居民加強(qiáng)體育鍛煉,準(zhǔn)備購買10副某種品牌的羽毛球拍,每副球拍配x(x≥2)個羽毛球,供社區(qū)居民免費(fèi)借用.該社區(qū)附近A、B兩家超市都有這種品牌的羽毛球拍和羽毛球出售,且每副球拍的標(biāo)價均為30元,每個羽毛球的標(biāo)價為3元,目前兩家超市同時在做促銷活動:A超市:所有商品均打九折(按標(biāo)價的90%)銷售;B超市:買一副羽毛球拍送2個羽毛球.設(shè)在A超市購買羽毛球拍和羽毛球的費(fèi)用為yA(元),在B超市購買羽毛球拍和羽毛球的費(fèi)用為yB(元).請解答下列問題:分別寫出yA、yB與x之間的關(guān)系式;若該活動中心只在一家超市購買,你認(rèn)為在哪家超市購買更劃算?若每副球拍配15個羽毛球,請你幫助該活動中心設(shè)計出最省錢的購買方案.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)題意,表示出兩種方式的總?cè)藬?shù),然后根據(jù)人數(shù)不變列方程即可.【詳解】根據(jù)題意可得:每車坐3人,兩車空出來,可得人數(shù)為3(x-2)人;每車坐2人,多出9人無車坐,可得人數(shù)為(2x+9)人,所以所列方程為:3(x-2)=2x+9.故選B.【點睛】此題主要考查了一元一次方程的應(yīng)用,關(guān)鍵是找到問題中的等量關(guān)系:總?cè)藬?shù)不變,列出相應(yīng)的方程即可.2、C【解析】

如圖,由圖可知BD=2、CD=1、BC=,根據(jù)sin∠BCA=可得答案.【詳解】解:如圖所示,∵BD=2、CD=1,∴BC===,則sin∠BCA===,故選C.【點睛】本題主要考查解直角三角形,解題的關(guān)鍵是熟練掌握正弦函數(shù)的定義和勾股定理.3、D【解析】

根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,再根據(jù)直角三角形的性質(zhì)和平行四邊形的性質(zhì)可得解.【詳解】根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,根據(jù)∠E=36°可得∠B=54°,根據(jù)平行四邊形的性質(zhì)可得∠ADC=∠B=54°.故選D【點睛】本題考查了平行四邊形的性質(zhì)、圓的基本性質(zhì).4、B【解析】

根據(jù)勾股定理得到OA==5,根據(jù)菱形的性質(zhì)得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結(jié)論.【詳解】∵點A的坐標(biāo)為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,菱形的性質(zhì),勾股定理,正確的識別圖形是解題的關(guān)鍵.5、D【解析】

由已知條件得到AD′=AD=4,AO=AB=2,根據(jù)勾股定理得到OD′==2,于是得到結(jié)論.【詳解】解:∵AD′=AD=4,

AO=AB=1,

∴OD′==2,

∵C′D′=4,C′D′∥AB,

∴C′(4,2),故選:D.【點睛】本題考查正方形的性質(zhì),坐標(biāo)與圖形的性質(zhì),勾股定理,正確的識別圖形是解題關(guān)鍵.6、A【解析】試題分析:從上面看易得上面一層有3個正方形,下面中間有一個正方形.故選A.【考點】簡單組合體的三視圖.7、A【解析】分析:由角的度數(shù)可以知道2、3中的兩個三角形的對應(yīng)邊都是平行的,所以圖2,圖3中的三角形都和圖1中的三角形相似.而且圖2三角形全等,圖3三角形相似.詳解:根據(jù)以上分析:所以圖2可得AE=BE,AD=EF,DE=BE.∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.圖3與圖1中,三個三角形相似,所以====.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故選A.點睛:本題考查了的知識點是平行四邊形的性質(zhì),解答本題的關(guān)鍵是利用相似三角形的平移,求得線段的關(guān)系.8、D【解析】

根據(jù)有理數(shù)的乘法法則進(jìn)行計算即可.【詳解】故選:D.【點睛】考查有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘.9、A【解析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.10、D【解析】

根據(jù)鄰補(bǔ)角的定義求出與外角相鄰的內(nèi)角,再根據(jù)等腰三角形的性質(zhì)分情況解答.【詳解】∵等腰三角形的一個外角是100°,∴與這個外角相鄰的內(nèi)角為180°?100°=80°,當(dāng)80°為底角時,頂角為180°-160°=20°,∴該等腰三角形的頂角是80°或20°.故答案選:D.【點睛】本題考查了等腰三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì).二、填空題(共7小題,每小題3分,滿分21分)11、48【解析】

(1)先求出斜邊的坡角為30°,再利用含30°的直角三角形即可求解;(2)設(shè)這個多邊形邊上為n,則內(nèi)角和為(n-2)×180°,外角度數(shù)為故可列出方程求解.【詳解】(1)∵∠ABC=150°,∴斜面BC的坡角為30°,∴h==4m(2)設(shè)這個多邊形邊上為n,則內(nèi)角和為(n-2)×180°,外角度數(shù)為依題意得解得n=8故為八邊形.【點睛】此題主要考查含30°的直角三角形與多邊形的內(nèi)角和計算,解題的關(guān)鍵是熟知含30°的直角三角形的性質(zhì)與多邊形的內(nèi)角和公式.12、10,1,1【解析】

作CD⊥x軸于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由線段垂直平分線的性質(zhì)得出BC=OC=1;當(dāng)t=3時,N到達(dá)C點,M到達(dá)OA的中點,OM=3,ON=OC=1,由三角形面積公式即可得出△OMN的面積.【詳解】解:作CD⊥x軸于D,CE⊥OB于E,如圖所示:由題意得:OA=1,OB=8,∵∠AOB=90°,∴AB==10;∵點C的坐標(biāo)(﹣2,4),∴OC==1,OE=4,∴BE=OB﹣OE=4,∴OE=BE,∴BC=OC=1;當(dāng)t=3時,N到達(dá)C點,M到達(dá)OA的中點,OM=3,ON=OC=1,∴△OMN的面積S=×3×4=1;故答案為:10,1,1.【點睛】本題考查了勾股定理、坐標(biāo)與圖形性質(zhì)、線段垂直平分線的性質(zhì)、三角形面積公式等知識;熟練掌握勾股定理是解題的關(guān)鍵.13、50°【解析】

延長BF交CD于G,根據(jù)折疊的性質(zhì)和平行四邊形的性質(zhì),證明△BCG≌△DAE,從而∠7=∠6=25°,進(jìn)而可求∠FDA得度數(shù).【詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【點睛】本題考查了折疊的性質(zhì),平行四邊形的性質(zhì),全等三角形的判定與性質(zhì).證明△BCG≌△DAE是解答本題的關(guān)鍵.14、1【解析】

根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當(dāng)OE⊥EC時,OE的長度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當(dāng)OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運(yùn)用全等三角形的判定是本題的關(guān)鍵.15、【解析】

當(dāng)AC與⊙O相切于點C時,P點縱坐標(biāo)的最大值,如圖,直線AC交y軸于點D,連結(jié)OC,作CH⊥x軸于H,PM⊥x軸于M,DN⊥PM于N,∵AC為切線,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2-)=1-,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=-,而MN=OD=,∴PM=PN+MN=1-+=,即P點縱坐標(biāo)的最大值為.【點睛】本題是圓的綜合題,先求出OD的長度,最后根據(jù)兩點之間線段最短求出PN+MN的值.16、【解析】

根據(jù)任何多邊形的外角和都是360度,先利用360°÷40°求出多邊形的邊數(shù),再根據(jù)多邊形的內(nèi)角和公式(n-2)?180°計算即可求解.【詳解】解:多邊形的邊數(shù)是:360°÷40°=9,

則內(nèi)角和是:(9-2)?180°=1260°.

故答案為1260°.【點睛】本題考查正多邊形的外角與邊數(shù)的關(guān)系,求出多邊形的邊數(shù)是解題的關(guān)鍵.17、﹣2【解析】

根據(jù)分式的運(yùn)算法則即可得解.【詳解】原式===,故答案為:.【點睛】本題主要考查了同分母的分式減法,熟練掌握相關(guān)計算法則是解決本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)B(-3,0),C(1,0);(2)①見解析;②≤t≤6.【解析】

(1)根據(jù)拋物線的頂點坐標(biāo)列方程,即可求得拋物線的解析式,令y=0,即可得解;(2)①根據(jù)翻折的性質(zhì)寫出翻折后的拋物線的解析式,與直線方程聯(lián)立,求得交點坐標(biāo)即可;②當(dāng)t=0時,直線與拋物線只有一個交點N(3,-6)(相切),此時直線與G無交點;第一個交點出現(xiàn)時,直線過點C(1+t,0),代入直線解析式:y=-4x+6+t,解得t=;最后一個交點是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.【詳解】(1)因為拋物線的頂點為M(-1,-2),所以對稱軸為x=-1,可得:,解得:a=,c=,所以拋物線解析式為y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);(2)①翻折后的解析式為y=-x2-x,與直線y=-4x+6聯(lián)立可得:x2-3x+=0,解得:x1=x2=3,所以該一元二次方程只有一個根,所以點N(3,-6)是唯一的交點;②≤t≤6.【點睛】本題主要考查了圖形運(yùn)動,解本題的要點在于熟知一元二次方程的相關(guān)知識點.19、(2);(2)詳見解析;(2)當(dāng)是以CD為腰的等腰三角形時,CD的長為2或.【解析】

(2)先求出OCOB=2,設(shè)OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結(jié)論;(2)先判斷出,進(jìn)而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結(jié)論;(3)分兩種情況:①當(dāng)CD=CE時,判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當(dāng)CD=DE時,判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進(jìn)而得出∠DEA=∠OEA,即:點D和點O重合,即可得出結(jié)論.【詳解】(2)∵C是半徑OB中點,∴OCOB=2.∵DE是AC的垂直平分線,∴AD=CD.設(shè)OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據(jù)勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線,∴AE=CE.∵E是弧AB的中點,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO?BC;(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:①當(dāng)CD=CE時.∵DE是AC的垂直平分線,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設(shè)菱形的邊長為a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;②當(dāng)CD=DE時.∵DE是AC垂直平分線,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.連接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴點D和點O重合,此時,點C和點B重合,∴CD=2.綜上所述:當(dāng)△DCE是以CD為腰的等腰三角形時,CD的長為2或.【點睛】本題是圓的綜合題,主要考查了勾股定理,線段垂直平分線的性質(zhì),菱形的判定和性質(zhì),銳角三角函數(shù),作出輔助線是解答本題的關(guān)鍵.20、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).【解析】試題分析:把點的坐標(biāo)代入即可求得拋物線的解析式.作BH⊥AC于點H,求出的長度,即可求出∠ACB的度數(shù).延長CD交x軸于點G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直線的方程,和拋物線的方程聯(lián)立即可求得點的坐標(biāo).試題解析:(1)由題意,得解得.∴這條拋物線的表達(dá)式為.(2)作BH⊥AC于點H,∵A點坐標(biāo)是(-1,0),C點坐標(biāo)是(0,3),B點坐標(biāo)是(,0),∴AC=,AB=,OC=3,BC=.∵,即∠BAD=,∴.Rt△BCH中,,BC=,∠BHC=90o,∴.又∵∠ACB是銳角,∴.(3)延長CD交x軸于點G,∵Rt△AOC中,AO=1,AC=,∴.∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.∴AG=CG.∴.∴AG=1.∴G點坐標(biāo)是(4,0).∵點C坐標(biāo)是(0,3),∴.∴解得,(舍).∴點D坐標(biāo)是21、(1)16人;(2)工中位數(shù)是1700元;眾數(shù)是1600元;(3)用1700元或1600元來介紹更合理些.(4)能反映該公司員工的月工資實際水平.【解析】

(1)用總?cè)藬?shù)50減去其它部門的人數(shù);(2)根據(jù)中位數(shù)和眾數(shù)的定義求解即可;(3)由平均數(shù)、眾數(shù)、中位數(shù)的特征可知,平均數(shù)易受極端數(shù)據(jù)的影響,用眾數(shù)和中位數(shù)映該公司員工的月工資實際水平更合適些;(4)去掉極端數(shù)據(jù)后平均數(shù)可以反映該公司員工的月工資實際水平.【詳解】(1)該公司“高級技工”的人數(shù)=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工資數(shù)從小到大排列,第25和第26分別是:1600元和1800元,因而中位數(shù)是1700元;在這些數(shù)中1600元出現(xiàn)的次數(shù)最多,因而眾數(shù)是1600元;(3)這個經(jīng)理的介紹不能反映該公司員工的月工資實際水平.用1700元或1600元來介紹更合理些.(4)(元).能反映該公司員工的月工資實際水平.22、(1)詳見解析;(1)【解析】

(1)連接OE交DF于點H,由切線的性質(zhì)得出∠F+∠EHF=90°,由FD⊥OC得出∠DOH+∠DHO=90°,依據(jù)對頂角的定義得出∠EHF=∠DHO,從而求得∠F=∠DOH,依據(jù)∠CBE=∠DOH,從而即可得證;(1)依據(jù)圓周角定理及其推論得出∠F=∠COE=1∠CBE=30°,求出OD的值,利用銳角三角函數(shù)的定義求出OH的值,進(jìn)一步求得HE的值,利用銳角三角函數(shù)的定義進(jìn)一步求得EF的值.【詳解】(1)證明:連接OE交DF于點H,∵EF是⊙O的切線,OE是⊙O的半徑,∴OE⊥EF.∴∠F+∠EHF=90°.∵FD⊥OC,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=∠DOH,∴(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半徑是,點D是OC中點,∴.在Rt△ODH中,cos∠DOH=,∴OH=1.∴.在Rt△FEH中,∴【點睛】本題主要考查切線的性質(zhì)及直角三角形的性質(zhì)、圓周角定理及三角函數(shù)的應(yīng)用,掌握圓周角定理和切線的性質(zhì)是解題的關(guān)鍵.23、(1)證明見解析;(2);拓展:【解析】

(1)由題意得BD=CE,得出BE=CD,證出AB=AC,由SAS證明△ABE≌△ACD即可;(2)由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠BEA=∠EAB=70°,證出AC=CD,由等腰三角形的性質(zhì)得出∠ADC=∠DAC=70°,即可得出∠DAE的度數(shù);拓展:對△ABD的外心位置進(jìn)行推理,即可得出結(jié)論.【詳解】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論