四川省成都外國語高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第1頁
四川省成都外國語高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第2頁
四川省成都外國語高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第3頁
四川省成都外國語高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第4頁
四川省成都外國語高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省成都外國語高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=(a≠1,n∈N*),在驗證n=1成立時,左邊的項是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a42.若直線平分圓的周長,則的值為()A.-1 B.1 C.3 D.53.已知數(shù)列滿足,,則的值為()A. B. C. D.4.方程表示的曲線是()A.一個圓 B.兩個圓 C.半個圓 D.兩個半圓5.已知、是不重合的平面,a、b、c是兩兩互不重合的直線,則下列命題:①;②;③.其中正確命題的個數(shù)是()A.3 B.2 C.1 D.06.在中,角的對邊分別是,若,且三邊成等比數(shù)列,則的值為()A. B. C.1 D.27.已知是非零向量,若,且,則與的夾角為()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,若輸入的a,b的值分別為1,1,則輸出的是()A.29 B.17 C.12 D.59.若集合A=α|α=π6+kπ,k∈ZA.? B.π6 C.-π10.下列函數(shù)中,在區(qū)間上是減函數(shù)的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角,,所對的邊分別為,,,若的面積為,且,,成等差數(shù)列,則最小值為______.12.圓錐的底面半徑是3,高是4,則圓錐的側(cè)面積是__________.13.若一個圓錐的高和底面直徑相等且它的體積為,則此圓錐的側(cè)面積為______.14.在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為.15.如圖,在中,,,點D為BC的中點,設(shè),.的值為___________.16.已知P1(x1,y1),P2(x2,y2)是以原點O為圓心的單位圓上的兩點,∠P1OP2=θ(θ為鈍角).若,則x1x2+y1y2的值為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù),其中向量,.(1)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;(2)在中,、、分別是角、、的對邊,已知,,的面積為,求外接圓半徑.18.已知數(shù)列的前項和為.(Ⅰ)當時,求數(shù)列的通項公式;(Ⅱ)當時,令,求數(shù)列的前項和.19.在中,,且邊上的中線長為,(1)求角的大小;(2)求的面積.20.求函數(shù)的單調(diào)遞增區(qū)間.21.如圖,在平面直角坐標系中,單位圓上存在兩點,滿足均與軸垂直,設(shè)與的面積之和記為.若,求的值;若對任意的,存在,使得成立,且實數(shù)使得數(shù)列為遞增數(shù)列,其中求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

在驗證時,左端計算所得的項,把代入等式左邊即可得到答案.【詳解】解:用數(shù)學(xué)歸納法證明,

在驗證時,把當代入,左端.

故選:C.【點睛】此題主要考查數(shù)學(xué)歸納法證明等式的問題,屬于概念性問題.2、D【解析】

求出圓的圓心坐標,由直線經(jīng)過圓心代入解得.【詳解】解:所以的圓心為因為直線平分圓的周長所以直線過圓心,即解得,故選:D.【點睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,屬于基礎(chǔ)題.3、B【解析】

由,得,然后根據(jù)遞推公式逐項計算出、的值,即可得出的值.【詳解】,,則,,,因此,,故選B.【點睛】本題考查數(shù)列中相關(guān)項的計算,解題的關(guān)鍵就是遞推公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.4、D【解析】原方程即即或故原方程表示兩個半圓.5、C【解析】

由面面垂直的判定定理,可得①正確;利用列舉所有可能,即可判斷②③錯誤.【詳解】①由面面垂直的判定定理,∵,a?β,∴α⊥β,故正確;

②,則平行,相交,異面都有可能,故不正確;

③,則與α平行,相交都有可能,故不正確.

故選:C.【點睛】本題主要考查線面關(guān)系的判斷,考查的空間想象能力,屬于基礎(chǔ)題.判斷線面關(guān)系問題首先要熟練掌握有關(guān)定理、推論,其次可以利用特殊位置排除錯誤結(jié)論.6、C【解析】

先利用正弦定理邊角互化思想得出,再利余弦定理以及條件得出可得出是等邊三角形,于此可得出的值.【詳解】,由正弦定理邊角互化的思想得,,,,則.、、成等比數(shù)列,則,由余弦定理得,化簡得,,則是等邊三角形,,故選C.【點睛】本題考查正弦定理邊角互化思想的應(yīng)用,考查余弦定理的應(yīng)用,解題時應(yīng)根據(jù)等式結(jié)構(gòu)以及已知元素類型合理選擇正弦定理與余弦定理求解,考查計算能力,屬于中等題.7、D【解析】

由得,這樣可把且表示出來.【詳解】∵,∴,,∴,∴,故選D.【點睛】本題考查向量的數(shù)量積,掌握數(shù)量積的定義是解題關(guān)鍵.8、B【解析】

根據(jù)程序框圖依次計算得到答案.【詳解】結(jié)束,輸出故答案選B【點睛】本題考查了程序框圖的計算,屬于??碱}型.9、B【解析】

先化簡集合A,B,再求A∩B.【詳解】由題得B={x|-1≤x≤3},A=?所以A∩B=π故選:B【點睛】本題主要考查一元二次不等式的解法和集合的交集運算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題,10、C【解析】

根據(jù)初等函數(shù)的單調(diào)性對各個選項的函數(shù)的解析式進行逐一判斷【詳解】函數(shù)在單調(diào)遞增,在單調(diào)遞增.

在單調(diào)遞減,在單調(diào)遞增.故選:C【點睛】本題主要考查了基本初等函數(shù)的單調(diào)性的判斷,屬于基礎(chǔ)試題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】

先根據(jù),,成等差數(shù)列得到,再根據(jù)余弦定理得到滿足的等式關(guān)系,而由面積可得,利用基本不等式可求的最小值.【詳解】因為,,成等差數(shù)列,,故.由余弦定理可得.由基本不等式可以得到,當且僅當時等號成立.因為,所以,所以即,當且僅當時等號成立.故填4.【點睛】三角形中與邊有關(guān)的最值問題,可根據(jù)題設(shè)條件找到各邊的等式關(guān)系或角的等量關(guān)系,再根據(jù)邊的關(guān)系式的結(jié)構(gòu)特征選用合適的基本不等式求最值,也可以利用正弦定理把與邊有關(guān)的目標代數(shù)式轉(zhuǎn)化為與角有關(guān)的三角函數(shù)式后再求其最值.12、【解析】分析:由已知中圓錐的底面半徑是,高是,由勾股定理,我們可以計算出圓錐的母線長,代入圓錐側(cè)面積公式,即可得到結(jié)論.詳解:圓錐的底面半徑是,高是,圓錐的母線長,則圓錐側(cè)面積公式,故答案為.點睛:本題主要考查圓錐的性質(zhì)與圓錐側(cè)面積公式,意在考查對基本公式的掌握與理解,屬于簡單題.13、【解析】

先由圓錐的體積公式求出圓錐的底面半徑,再結(jié)合圓錐的側(cè)面積公式求解即可.【詳解】解:設(shè)圓錐的底面半徑為,則圓錐的高為,母線長為,由圓錐的體積為,則,即,則此圓錐的側(cè)面積為.故答案為:.【點睛】本題考查了圓錐的體積公式,重點考查了圓錐的側(cè)面積公式,屬基礎(chǔ)題.14、【解析】

直接利用長度型幾何概型求解即可.【詳解】因為區(qū)間總長度為,符合條件的區(qū)間長度為,所以,由幾何概型概率公式可得,在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為,故答案為:.【點睛】解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與長度有關(guān)的幾何概型問題關(guān)鍵是計算問題的總長度以及事件的長度.15、【解析】

在和在中,根據(jù)正弦定理,分別表示出.由可得等式,代入已知條件化簡即可得解.【詳解】在中,由正弦定理可得,則在中,由正弦定理可得,則點D為BC的中點,則所以因為,,由誘導(dǎo)公式可知代入上述兩式可得所以故答案為:【點睛】本題考查了正弦定理的簡單應(yīng)用,屬于基礎(chǔ)題.16、-【解析】

先利用平面向量數(shù)量積的定義和坐標運算得到,再利用兩角和的正弦公式和平方關(guān)系進行求解.【詳解】根據(jù)題意知,又P1,P2在單位圓上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ為鈍角,聯(lián)立①②求得cosθ=-.【點睛】本題主要考查平面向量的數(shù)量積定義和坐標運算、兩角和的正弦公式,意在考查學(xué)生的邏輯思維能力和基本運算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),的單調(diào)遞減區(qū)間是;(2).【解析】試題分析:(1)用坐標表示向量條件,代入函數(shù)解析式中,運用向量的坐標運算法則求出函數(shù)解析式并應(yīng)用二倍角公式以及兩角和的正弦公式化簡函數(shù)解析式,由三角函數(shù)的性質(zhì)可求函數(shù)的最小正周期及單調(diào)遞減區(qū)間;(2)將條件代入函數(shù)解析式可求出角,由三角形面積公式求出邊,再由余弦定理求出邊,再由正弦定理可求外接圓半徑.試題解析:(1)由題意得:.所以,函數(shù)的最小正周期為,由得函數(shù)的單調(diào)遞減區(qū)間是(2),解得,又的面積為.得.再由余弦定理,解得,即△為直角三角形.考點:1.向量坐標運算;2.三角函數(shù)圖象與性質(zhì);3.正弦定理與余弦定理.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用的方法,進行求解即可(Ⅱ)仍然使用的方法,先求出,然后代入,并化簡得,然后利用裂項求和,求出數(shù)列的前項和【詳解】解:(Ⅰ)數(shù)列的前項和為①.當時,,當時,②,①﹣②得:,(首相不符合通項),所以:(Ⅱ)當時,①,當時,②,①﹣②得:,所以:令,所以:,則:【點睛】本題考查求數(shù)列通項的求法的應(yīng)用,以及利用裂項求和法進行求和,屬于基礎(chǔ)題19、(Ⅰ);(Ⅱ).【解析】

(1)本題可根據(jù)三角函數(shù)相關(guān)公式將化簡為,然后根據(jù)即可求出角的大小;(2)本題首先可設(shè)的中點為,然后根據(jù)向量的平行四邊形法則得到,再然后通過化簡計算即可求得,最后通過三角形面積公式即可得出結(jié)果.【詳解】(1)由正弦定理邊角互換可得,所以.因為,所以,即,即,整理得.因為,所以,所以,即,所以.因為,所以,即.(2)設(shè)的中點為,根據(jù)向量的平行四邊形法則可知所以,即,因為,,所以,解得(負值舍去).所以.【點睛】本題考查三角恒等變換公式及解三角形相關(guān)公式的應(yīng)用,考查了向量的平行四邊形法則以及向量的運算,考查了化歸與轉(zhuǎn)化思想,體現(xiàn)了綜合性,是難題.20、()【解析】

先化簡函數(shù)得到,再利用復(fù)合函數(shù)單調(diào)性原則結(jié)合整體法求單調(diào)區(qū)間即可.【詳解】,令,則,因為是的一次函數(shù),且在定義域上單調(diào)遞增,所以要求的單調(diào)遞增區(qū)間,即求的單調(diào)遞減區(qū)間,即(),∴(),即(),∴函數(shù)的單調(diào)遞增區(qū)間為().【點睛】本題考查求復(fù)合型三角函數(shù)的單調(diào)區(qū)間,答題時注意,復(fù)合函數(shù)的單調(diào)性遵循“同增異減”法則.21、(1)或(2)【解析】

(1)運用三角形的面積公式和三角函數(shù)的和差公式,以及特殊角的函數(shù)值,可得所求角;(2)由正弦函數(shù)的值域可得的最大值,再由基本不等式可得的最大值,可得的范圍,再由數(shù)列的單調(diào)性,討論的范圍,即可得到的取值范圍.【詳解】依題意,可得,由,得,又,所以.由得因為,所以,所以,當時,,(當且僅當時,等號成立)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論