宿遷市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第1頁(yè)
宿遷市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第2頁(yè)
宿遷市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第3頁(yè)
宿遷市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第4頁(yè)
宿遷市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

宿遷市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:“一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈多少?”現(xiàn)有類似問(wèn)題:一座5層塔共掛了363盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的3倍,則塔的底層共有燈A.81盞 B.112盞 C.162盞 D.243盞2.?dāng)?shù)列{an}中a1=﹣2,an+1=1,則a2019的值為()A.﹣2 B. C. D.3.如圖,已知邊長(zhǎng)為的正三角形內(nèi)接于圓,為邊中點(diǎn),為邊中點(diǎn),則為()A. B. C. D.4.供電部門對(duì)某社區(qū)1000位居民2019年4月份人均用電情況進(jìn)行統(tǒng)計(jì)后,按人均用電量分為[0,10),[10,20),[20,30),[40,50]五組,整理得到如下的頻率分布直方圖,則下列說(shuō)法錯(cuò)誤的是()A.4月份人均用電量人數(shù)最多的一組有400人B.4月份人均用電量不低于20度的有500人C.4月份人均用電量為25度D.在這1000位居民中任選1位協(xié)助收費(fèi),選到的居民用電量在[30,40)一組的概率為15.已知函數(shù)的值域?yàn)?,且圖像在同一周期內(nèi)過(guò)兩點(diǎn),則的值分別為()A. B.C. D.6.函數(shù)的對(duì)稱中心是()A. B. C. D.7.已知向量,,則與夾角的大小為()A. B. C. D.8.已知等差數(shù)列的公差d>0,則下列四個(gè)命題:①數(shù)列是遞增數(shù)列;②數(shù)列是遞增數(shù)列;③數(shù)列是遞增數(shù)列;④數(shù)列是遞增數(shù)列;其中正確命題的個(gè)數(shù)為()A.1 B.2 C.3 D.49.在中,,,,則=()A. B.C. D.10.古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有女子善織,日自倍,五日織五尺,問(wèn)日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問(wèn)這女子每天分別織布多少?”根據(jù)上題的已知條件,可求得該女子第3天所織布的尺數(shù)為A.2031 B.35 C.8二、填空題:本大題共6小題,每小題5分,共30分。11.過(guò)點(diǎn)直線與軸的正半軸,軸的正半軸分別交于、兩點(diǎn),為坐標(biāo)原點(diǎn),當(dāng)最小時(shí),直線的一般方程為_(kāi)_____.12.若,則________.13.已知點(diǎn)在直線上,則的最小值為_(kāi)_________.14.若正實(shí)數(shù)滿足,則的最小值為_(kāi)_____.15.設(shè)等差數(shù)列,的前項(xiàng)和分別為,,若,則__________.16.方程的解集為_(kāi)___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.在數(shù)列中,,,數(shù)列的前項(xiàng)和為,且.(1)證明:數(shù)列是等差數(shù)列.(2)若對(duì)恒成立,求的取值范圍.18.在中,角所對(duì)的邊分別為.(1)若為邊的中點(diǎn),求證:;(2)若,求面積的最大值.19.已知函數(shù)()的一段圖象如圖所示.(1)求函數(shù)的解析式;(2)若,求函數(shù)的值域.20.如圖,已知平面,為矩形,分別為的中點(diǎn),.(1)求證:平面;(2)求證:面平面;(3)求點(diǎn)到平面的距離.21.已知函數(shù)(1)若,求函數(shù)的零點(diǎn);(2)若在恒成立,求的取值范圍;(3)設(shè)函數(shù),解不等式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

從塔頂?shù)剿酌繉訜舯K數(shù)可構(gòu)成一個(gè)公比為3的等比數(shù)列,其和為1.由等比數(shù)列的知識(shí)可得.【詳解】從塔頂?shù)剿酌繉訜舯K數(shù)依次記為a1,a2,a3故選D.【點(diǎn)睛】本題考查等比數(shù)列的應(yīng)用,解題關(guān)鍵是根據(jù)實(shí)際意義構(gòu)造一個(gè)等比數(shù)列,把問(wèn)題轉(zhuǎn)化為等比數(shù)列的問(wèn)題.2、B【解析】

根據(jù)遞推公式,算出即可觀察出數(shù)列的周期為3,根據(jù)周期即可得結(jié)果.【詳解】解:由已知得,,,

,…,,

所以數(shù)列是以3為周期的周期數(shù)列,故,

故選:B.【點(diǎn)睛】本題考查遞推數(shù)列的直接應(yīng)用,難度較易.3、B【解析】

如圖,是直角三角形,是等邊三角形,,,則與的夾角也是30°,∴,又,∴.故選B.【點(diǎn)睛】本題考查平面向量的數(shù)量積,解題時(shí)可通過(guò)平面幾何知識(shí)求得向量的模,向量之間的夾角,這可簡(jiǎn)化運(yùn)算.4、C【解析】

根據(jù)頻率分布直方圖逐一計(jì)算分析.【詳解】A:用電量最多的一組有:0.04×10×1000=400人,故正確;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正確;C:人均用電量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故錯(cuò)誤;D:用電量在[30,40)的有:0.01×10×1000=100人,所以P=100故選C.【點(diǎn)睛】本題考查利用頻率分布直方圖求解相關(guān)量,難度較易.頻率分布直方圖中平均數(shù)的求法:每一段的組中值×頻率5、C【解析】

先利用可求出的值,再利用、兩點(diǎn)橫坐標(biāo)之差的絕對(duì)值為周期的一半,計(jì)算出周期,再由可計(jì)算出的值,從而可得出答案.【詳解】由題意可知,,、兩點(diǎn)橫坐標(biāo)之差的絕對(duì)值為周期的一半,則,,因此,,,故選C.【點(diǎn)睛】本題考查三角函數(shù)的解析式的求解,求解步驟如下:(1)求、:,;(2)求:根據(jù)題中信息求出最小正周期,利用公式求出的值;(3)求:將對(duì)稱中心點(diǎn)和最高、最低點(diǎn)的坐標(biāo)代入函數(shù)解析式,若選擇對(duì)稱中心點(diǎn),還要注意函數(shù)在該點(diǎn)附近的單調(diào)性.6、C【解析】,設(shè)是奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,而函數(shù)的圖象可由的圖象向右平移一個(gè)單位,向下平移兩個(gè)單位得到,所以函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,故選C.7、D【解析】

根據(jù)向量,的坐標(biāo)及向量夾角公式,即可求出,從而根據(jù)向量夾角的范圍即可求出夾角.【詳解】向量,,則;∴;∵0≤<a,b>≤π;∴<a,b>=.故選:D.【點(diǎn)睛】本題考查數(shù)量積表示兩個(gè)向量的夾角,已知向量坐標(biāo)代入夾角公式即可求解,屬于??碱}型,屬于簡(jiǎn)單題.8、B【解析】

對(duì)于各個(gè)選項(xiàng)中的數(shù)列,計(jì)算第n+1項(xiàng)與第n項(xiàng)的差,看此差的符號(hào),再根據(jù)遞增數(shù)列的定義得出結(jié)論.【詳解】設(shè)等差數(shù)列,d>0∵對(duì)于①,n+1﹣n=d>0,∴數(shù)列是遞增數(shù)列成立,是真命題.對(duì)于②,數(shù)列,得,,所以不一定是正實(shí)數(shù),即數(shù)列不一定是遞增數(shù)列,是假命題.對(duì)于③,數(shù)列,得,,不一定是正實(shí)數(shù),故是假命題.對(duì)于④,數(shù)列,故數(shù)列是遞增數(shù)列成立,是真命題.故選:B.【點(diǎn)睛】本題考查用定義判斷數(shù)列的單調(diào)性,考查學(xué)生的計(jì)算能力,正確運(yùn)用遞增數(shù)列的定義是關(guān)鍵,屬于基礎(chǔ)題.9、C【解析】

根據(jù)正弦定理,代入即可求解.【詳解】因?yàn)橹?,,由正弦定理可知代入可得故選:C【點(diǎn)睛】本題考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.10、A【解析】

由題意可得該女子每天織布的尺數(shù)構(gòu)成一個(gè)等比數(shù)列,且數(shù)列的公比為2,由題意求出數(shù)列的首項(xiàng)后可得第3天織布的尺數(shù).【詳解】由題意可得該女子每天織布的尺數(shù)構(gòu)成一個(gè)等比數(shù)列,且數(shù)列的公比為2,前5項(xiàng)的和為5,設(shè)首項(xiàng)為a1,前n項(xiàng)和為S則由題意得S5∴a1∴a3即該女子第3天所織布的尺數(shù)為2031故選A.【點(diǎn)睛】本題以中國(guó)古文化為載體考查等比數(shù)列的基本運(yùn)算,解題的關(guān)鍵是正確理解題意,將問(wèn)題轉(zhuǎn)化成等比數(shù)列的知識(shí)求解,考查閱讀理解和轉(zhuǎn)化、計(jì)算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設(shè)直線的截距式方程為,利用該直線過(guò)可得,再利用基本不等式可求何時(shí)即取最小值,從而得到相應(yīng)的直線方程.【詳解】設(shè)直線的截距式方程為,其中且.因?yàn)橹本€過(guò),故.所以,由基本不等式可知,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故當(dāng)取最小值時(shí),直線方程為:.填.【點(diǎn)睛】直線方程有五種形式,常用的形式有點(diǎn)斜式、斜截式、截距式、一般式,垂直于的軸的直線沒(méi)有點(diǎn)斜式、斜截式和截距式,垂直于軸的直線沒(méi)有截距式,注意根據(jù)題設(shè)所給的條件選擇合適的方程的形式,特別地,如果考慮的問(wèn)題是與直線、坐標(biāo)軸圍成的直角三角形有關(guān)的問(wèn)題,可考慮利用截距式.12、【解析】

觀察式子特征,直接寫出,即可求出?!驹斀狻坑^察的式子特征,明確各項(xiàng)關(guān)系,以及首末兩項(xiàng),即可寫出,所以,相比,增加了后兩項(xiàng),少了第一項(xiàng),故?!军c(diǎn)睛】本題主要考查學(xué)生的數(shù)學(xué)抽象能力,正確弄清式子特征是解題關(guān)鍵。13、5【解析】

由題得表示點(diǎn)到點(diǎn)的距離,再利用點(diǎn)到直線的距離求解.【詳解】由題得表示點(diǎn)到點(diǎn)的距離.又∵點(diǎn)在直線上,∴的最小值等于點(diǎn)到直線的距離,且.【點(diǎn)睛】本題主要考查點(diǎn)到兩點(diǎn)間的距離和點(diǎn)到直線的距離的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.14、【解析】

由得,將轉(zhuǎn)化為,整理,利用基本不等式即可求解。【詳解】因?yàn)?,所?所以當(dāng)且僅當(dāng),即:時(shí),等號(hào)成立。所以的最小值為.【點(diǎn)睛】本題主要考查了構(gòu)造法及轉(zhuǎn)化思想,考查基本不等式的應(yīng)用及計(jì)算能力,屬于基礎(chǔ)題。15、【解析】分析:首先根據(jù)等差數(shù)列的性質(zhì)得到,利用分?jǐn)?shù)的性質(zhì),將項(xiàng)的比值轉(zhuǎn)化為和的比值,從而求得結(jié)果.詳解:根據(jù)題意有,所以答案是.點(diǎn)睛:該題考查的是有關(guān)等差數(shù)列的性質(zhì)的問(wèn)題,將兩個(gè)等差數(shù)列的項(xiàng)的比值可以轉(zhuǎn)化為其和的比值,結(jié)論為,從而求得結(jié)果.16、或【解析】

首先將原方程利用輔助角公式化簡(jiǎn)為,再求出的值即可.【詳解】由題知:,,.所以或,.解得:或.所以解集為:或.故答案為:或【點(diǎn)睛】本題主要考查正弦函數(shù)的圖像及特殊角的三角函數(shù)值,同時(shí)考查了輔助角公式,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】

(1)根據(jù)已知可變形為常數(shù);(2)首先求數(shù)列的通項(xiàng)公式,然后利用裂項(xiàng)相消法求,若滿足對(duì)恒成立,需滿足,,求的取值范圍.【詳解】(1)證明:因?yàn)?,所以,,則.又,故數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列.(2)由(1)可知,則.因?yàn)?,所以,所以.易知單調(diào)遞增,則.所以,且,解得.故的取值范圍為.【點(diǎn)睛】本題考查了證明等差數(shù)列的方法,以及裂項(xiàng)相消法求和,本題的一個(gè)亮點(diǎn)是與函數(shù)結(jié)合考查數(shù)列的最值問(wèn)題,涉及最值時(shí),需先判斷函數(shù)的單調(diào)性,可以根據(jù)函數(shù)特征直接判斷單調(diào)性或是根據(jù)的正負(fù)判斷單調(diào)性,然后求最值.18、(1)詳見(jiàn)解析;(2)1.【解析】

(1)證法一:根據(jù)為邊的中點(diǎn),可以得到向量等式,平方,再結(jié)合余弦定理,可以證明出等式;證法二:分別在和中,利用余弦定理求出和的表達(dá)式,利用,可以證明出等式;(2)解法一:解法一:記面積為.由題意并結(jié)合(1)所證結(jié)論得:,利用已知,再結(jié)合基本不等式,最后求可求出面積的最大值;解法二:利用余弦定理把表示出來(lái),結(jié)合重要不等式,再利用三角形面積公式可得,令設(shè),利用輔助角公式,可以求出的最大值,即可求出面積的最大值.【詳解】(1)證法一:由題意得①由余弦定理得②將②代入①式并化簡(jiǎn)得,故;證法二:在中,由余弦定理得,在中,由余弦定理得,∵,∴,則,故;(2)解法一:記面積為.由題意并結(jié)合(1)所證結(jié)論得:,又已知,則,即,當(dāng)時(shí),等號(hào)成立,故,即面積的最大值為1.解法二:設(shè)則由,故.【點(diǎn)睛】本題考查了余弦定理、三角形面積公式的應(yīng)用,考查了重要不等式及基本不等式,考查了數(shù)學(xué)運(yùn)算能力.19、(1);(2)【解析】

(1)由函數(shù)的一段圖象求得、、和的值即可;(2)由,求得的取值范圍,再利用正弦函數(shù)的性質(zhì)求得的最大和最小值即可.【詳解】解:(1)由函數(shù)的一段圖象知,,,,解得,又時(shí),,,,解得,;,函數(shù)的解析式為;(2)當(dāng)時(shí),,令,解得,此時(shí)取得最大值為2;令,解得,此時(shí)取得最小值為;函數(shù)的值域?yàn)椋军c(diǎn)睛】本題考查了函數(shù)的圖象和性質(zhì)的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【解析】

(1)利用線面平行的判定定理,尋找面PAD內(nèi)的一條直線平行于MN,即可證出;(2)先證出一條直線垂直于面PCD,依據(jù)第一問(wèn)結(jié)論知,MN也垂直于面PCD,利用面面垂直的判定定理即可證出;(3)依據(jù)等積法,即可求出點(diǎn)到平面的距離.【詳解】證明:(1)取中點(diǎn)為,連接分別為的中點(diǎn),是平行四邊形,平面,平面,∴平面證明:(2)因?yàn)槠矫妫?,?面PAD,而面,所以,由,為的終點(diǎn),所以由于平面,又由(1)知,平面,平面,∴平面平面解:(3),,,則點(diǎn)到平面的距離為(也可構(gòu)造三棱錐)【點(diǎn)睛】本題主要考查線面平行、面面垂直的判定定理以及等積法求點(diǎn)到面的距離,意在考查學(xué)生的直觀想象、邏輯推理、數(shù)學(xué)運(yùn)算能力.21、(1)1;(2)(3)見(jiàn)解析【解析】

(1)解方程可得零點(diǎn);(2)恒成立,可分離參數(shù)得,這樣只要求得在上的最大值即可;(3)注意到的定義域,不等式等價(jià)于,這樣可根據(jù)與0,1的大小關(guān)系分類討論.【詳解】(1)當(dāng)時(shí),令得,,∵,∴函數(shù)的零點(diǎn)是1(2)在恒成立,即在恒成立,分離參數(shù)得:,∵,∴從而有:.(3)令,得,,因?yàn)楹瘮?shù)的定義域?yàn)?,所以等價(jià)于(1)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論