2022-2023學年寧夏回族自治區(qū)銀川市一中數(shù)學高三上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2022-2023學年寧夏回族自治區(qū)銀川市一中數(shù)學高三上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2022-2023學年寧夏回族自治區(qū)銀川市一中數(shù)學高三上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2022-2023學年寧夏回族自治區(qū)銀川市一中數(shù)學高三上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2022-2023學年寧夏回族自治區(qū)銀川市一中數(shù)學高三上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.172.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.3.若的展開式中的系數(shù)為150,則()A.20 B.15 C.10 D.254.一個超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.65.設(shè)復(fù)數(shù),則=()A.1 B. C. D.6.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.7.已知角的終邊經(jīng)過點,則A. B.C. D.8.很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學家和數(shù)學愛好者,有些猜想已經(jīng)被數(shù)學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.9.如果,那么下列不等式成立的是()A. B.C. D.10.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.811.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.12.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.請列舉用0,1,2,3這4個數(shù)字所組成的無重復(fù)數(shù)字且比210大的所有三位奇數(shù):___________.14.已知向量,,若,則________.15.在的展開式中,的系數(shù)為________.16.展開式中,含項的系數(shù)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè),函數(shù),其中為自然對數(shù)的底數(shù).(1)設(shè)函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.18.(12分)以直角坐標系的原點為極坐標系的極點,軸的正半軸為極軸.已知曲線的極坐標方程為,是上一動點,,點的軌跡為.(1)求曲線的極坐標方程,并化為直角坐標方程;(2)若點,直線的參數(shù)方程(為參數(shù)),直線與曲線的交點為,當取最小值時,求直線的普通方程.19.(12分)某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計,可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)180°而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.(1)求關(guān)于的函數(shù)關(guān)系式;(2)為了達到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時腰的長度.20.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.21.(12分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修.工廠規(guī)定當日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數(shù)12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù).(Ⅰ)求X的分布列與數(shù)學期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結(jié)論)22.(10分)已知動圓經(jīng)過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標準方程;(2)設(shè)點的橫坐標為,,為圓與曲線的公共點,若直線的斜率,且,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數(shù)可以為8.故選:C【點睛】本題考查對數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.2、A【解析】

利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.3、C【解析】

通過二項式展開式的通項分析得到,即得解.【詳解】由已知得,故當時,,于是有,則.故選:C【點睛】本題主要考查二項式展開式的通項和系數(shù)問題,意在考查學生對這些知識的理解掌握水平.4、A【解析】

根據(jù)定義,表示出數(shù)列的通項并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個數(shù).【詳解】由題意可知首項為2,設(shè)第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當?shù)闹悼梢詾椋患从?個這種超級斐波那契數(shù)列,故選:A.【點睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.5、A【解析】

根據(jù)復(fù)數(shù)的除法運算,代入化簡即可求解.【詳解】復(fù)數(shù),則故選:A.【點睛】本題考查了復(fù)數(shù)的除法運算與化簡求值,屬于基礎(chǔ)題.6、D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.7、D【解析】因為角的終邊經(jīng)過點,所以,則,即.故選D.8、B【解析】

根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結(jié)果.【詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結(jié)果,考查計算能力,屬于基礎(chǔ)題.9、D【解析】

利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.10、A【解析】

依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題.11、C【解析】

設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點睛】本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達定理,判別式找到解決問題的突破口.12、C【解析】

先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關(guān)系,意在考查數(shù)學建模、數(shù)學計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、231,321,301,1【解析】

分個位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個數(shù)字所組成的無重復(fù)數(shù)字比210大的所有三位奇數(shù)有:(1)當個位數(shù)字是1時,數(shù)字可以是231,321,301;(2)當個位數(shù)字是3時數(shù)字可以是1.故答案為:231,321,301,1【點睛】本題考查了分類計數(shù)法的應(yīng)用,考查了學生分類討論,數(shù)學運算的能力,屬于基礎(chǔ)題.14、10【解析】

根據(jù)垂直得到,代入計算得到答案.【詳解】,則,解得,故,故.故答案為:.【點睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學生的計算能力.15、【解析】

根據(jù)二項展開式定理,求出含的系數(shù)和含的系數(shù),相乘即可.【詳解】的展開式中,所求項為:,的系數(shù)為.

故答案為:.【點睛】本題考查二項展開式定理的應(yīng)用,屬于基礎(chǔ)題.16、2【解析】

變換得到,展開式的通項為,計算得到答案.【詳解】,的展開式的通項為:.含項的系數(shù)為:.故答案為:.【點睛】本題考查了二項式定理的應(yīng)用,意在考查學生的計算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①函數(shù)與的圖象在區(qū)間上有交點;②證明見解析;(2)且;【解析】

(1)①令,結(jié)合函數(shù)零點的判定定理判斷即可;②設(shè)切點橫坐標為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可.【詳解】解:(1)①當時,函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點,故函數(shù)與的圖象在區(qū)間上有交點;②證明:假設(shè)存在,使得直線是曲線的切線,切點橫坐標為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數(shù)在和上單調(diào)遞增,又函數(shù)在時,故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當時,遞減,故當時,,遞增,當時,,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,①當時,,故在遞減,可得當時,,當時,,,易證,令,,令,故,則,故在遞增,則,即時,,故在,內(nèi)存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時,,遞增,不合題意;③當時,,當,時,,遞減,當時,,遞增,故在處取極小值,符合題意,綜上,實數(shù)的范圍是且.【點睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.18、(1),;(2).【解析】

(1)設(shè)點極坐標分別為,,由可得,整理即可得到極坐標方程,進而求得直角坐標方程;(2)設(shè)點對應(yīng)的參數(shù)分別為,則,,將直線的參數(shù)方程代入的直角坐標方程中,再利用韋達定理可得,,則,求得取最小值時符合的條件,進而求得直線的普通方程.【詳解】(1)設(shè)點極坐標分別為,,因為,則,所以曲線的極坐標方程為,兩邊同乘,得,所以的直角坐標方程為,即.(2)設(shè)點對應(yīng)的參數(shù)分別為,則,,將直線的參數(shù)方程(參數(shù)),代入的直角坐標方程中,整理得.由韋達定理得,,所以,當且僅當時,等號成立,則,所以當取得最小值時,直線的普通方程為.【點睛】本題考查極坐標與直角坐標方程的轉(zhuǎn)化,考查利用直線的參數(shù)方程研究直線與圓的位置關(guān)系.19、(1),(2)側(cè)面積取得最大值時,等腰三角形的腰的長度為【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過求導(dǎo)分析,得在時取得極大值,也是最大值.試題解析:(1)設(shè)交于點,過作,垂足為,在中,,,在中,,所以S,(2)要使側(cè)面積最大,由(1)得:令,所以得,由得:當時,,當時,所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以在時取得極大值,也是最大值;所以當時,側(cè)面積取得最大值,此時等腰三角形的腰長答:側(cè)面積取得最大值時,等腰三角形的腰的長度為.20、(1)證明見解析(2)證明見解析【解析】

(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點睛】本題考查絕對值不等式、應(yīng)用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.21、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】

(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當P(a≤X≤b)取到最大值時,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結(jié)果,判斷至少增加2人.【詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論