




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
株洲市重點中學新高考預測卷(全國Ⅱ卷)數(shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),將函數(shù)的圖象向左平移個單位長度后,所得到的圖象關于軸對稱,則的最小值是()A. B. C. D.2.設雙曲線的一條漸近線為,且一個焦點與拋物線的焦點相同,則此雙曲線的方程為()A. B. C. D.3.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)4.已知集合,,若,則()A.4 B.-4 C.8 D.-85.下列命題為真命題的個數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.36.已知復數(shù)滿足,則()A. B. C. D.7.函數(shù)f(x)=2x-3A.[32C.[328.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.29.若,則()A. B. C. D.10.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.11.已知集合,,,則()A. B. C. D.12.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則________;滿足的的取值范圍為________.14.已知函數(shù)則______.15.若,則________.16.在的展開式中的系數(shù)為,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,求的面積的值(或最大值).已知的內(nèi)角,,所對的邊分別為,,,三邊,,與面積滿足關系式:,且,求的面積的值(或最大值).18.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎者擲各面標有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎者從箱中任意摸出個球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學期望不超過元,求的最小值.19.(12分)已知圓上有一動點,點的坐標為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.20.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數(shù)學期望.21.(12分)為響應“堅定文化自信,建設文化強國”,提升全民文化修養(yǎng),引領學生“讀經(jīng)典用經(jīng)典”,某廣播電視臺計劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學校隨機抽取了120名學生做調(diào)查,統(tǒng)計結果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認為喜歡閱讀中國古典文學與性別有關系?男生女生總計喜歡閱讀中國古典文學不喜歡閱讀中國古典文學總計(2)為做好文化建設引領,實驗組把該校作為試點,和該校的學生進行中國古典文學閱讀交流.實驗人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學.現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學的人數(shù),求5的分布列及數(shù)學期望附表及公式:.22.(10分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,為數(shù)列的前項和,記,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
化簡為,求出它的圖象向左平移個單位長度后的圖象的函數(shù)表達式,利用所得到的圖象關于軸對稱列方程即可求得,問題得解。【詳解】函數(shù)可化為:,將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,又所得到的圖象關于軸對稱,所以,解得:,即:,又,所以.故選:A.【點睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識,考查轉(zhuǎn)化能力,屬于中檔題。2、C【解析】
求得拋物線的焦點坐標,可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點睛】本題主要考查了求雙曲線的方程,屬于中檔題.3、C【解析】
求函數(shù)導數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數(shù)導數(shù)研究函數(shù)的單調(diào)性,進而研究函數(shù)的最值,屬于??碱}型.4、B【解析】
根據(jù)交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎題.5、C【解析】
對于①中,根據(jù)指數(shù)冪的運算性質(zhì)和不等式的性質(zhì),可判定值正確的;對于②中,構造新函數(shù),利用導數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進而得到,即可判定是錯誤的;對于③中,構造新函數(shù),利用導數(shù)求得函數(shù)的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對于②中,設函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因為,則又由,所以,即,所以②不正確;對于③中,設函數(shù),則,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,所以當時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質(zhì),以及導數(shù)在函數(shù)中的綜合應用,其中解答中根據(jù)題意,合理構造新函數(shù),利用導數(shù)求得函數(shù)的單調(diào)性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.6、A【解析】
根據(jù)復數(shù)的運算法則,可得,然后利用復數(shù)模的概念,可得結果.【詳解】由題可知:由,所以所以故選:A【點睛】本題主要考查復數(shù)的運算,考驗計算,屬基礎題.7、A【解析】
根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因為函數(shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數(shù)fx的定義域為a,b,則函數(shù)fgx8、B【解析】
首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關特征求得結果.9、D【解析】
直接利用二倍角余弦公式與弦化切即可得到結果.【詳解】∵,∴,故選D【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變變換,同角三角函數(shù)關系式的應用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎題型.10、C【解析】
將圓,化為標準方程為,求得圓心為.根據(jù)圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.11、D【解析】
根據(jù)集合的基本運算即可求解.【詳解】解:,,,則故選:D.【點睛】本題主要考查集合的基本運算,屬于基礎題.12、D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進而求出,再根據(jù)復合函數(shù)的單調(diào)性,即可求出結論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復合函數(shù)單調(diào)性判斷方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先由分段函數(shù)的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因為,所以,∵,∴當時,滿足題意,∴;當時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點睛】本題考查分段函數(shù)的性質(zhì)的應用,分類討論思想,屬于基礎題.14、【解析】
先由解析式求得(2),再求(2).【詳解】(2),,所以(2),故答案為:【點睛】本題考查對數(shù)、指數(shù)的運算性質(zhì),分段函數(shù)求值關鍵是“對號入座”,屬于容易題.15、13【解析】
由導函數(shù)的應用得:設,,所以,,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【詳解】解:設,,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點睛】本題考查了導函數(shù)的應用、二項式定理,屬于中檔題16、2【解析】
首先求出的展開項中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【詳解】由題知,當時有,解得.故答案為:.【點睛】本題主要考查了二項式展開項的系數(shù),屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】
若選擇①,結合三角形的面積公式,得,化簡得到,則,又,從而得到,將代入,得.又,∴,當且僅當時等號成立.∴,故的面積的最大值為,此時.若選擇②,,結合三角形的面積公式,得,化簡得到,則,又,從而得到,則,此時為等腰直角三角形,.若選擇③,,則結合三角形的面積公式,得,化簡得到,則,又,從而得到,則.18、;.【解析】
設顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數(shù)學期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于??碱}.19、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)先畫出圖形,結合垂直平分線和平行四邊形性質(zhì)可得為一定值,,故可確定點軌跡為橢圓(),進而求解;(Ⅱ)設直線方程為,點坐標分別為,聯(lián)立直線與橢圓方程得,,分別由點斜式求得直線KA的方程為,令得,同理得,由結合韋達定理即可求解,而,當重合交于點時,可求最值;【詳解】(Ⅰ),所以點的軌跡是一個橢圓,且長軸長,半焦距,所以,軌跡的方程為.(Ⅱ)當直線的斜率為0時,與曲線無交點.當直線的斜率不為0時,設過點的直線方程為,點坐標分別為.直線與橢圓方程聯(lián)立得消去,得.則,.直線KA的方程為.令得.同理可得.所以.所以的中點為.不妨設點在點的上方,則.【點睛】本題考查根據(jù)橢圓的定義求橢圓的方程,橢圓中的定點定值問題,屬于中檔題20、(1)(2)分布列見解析,期望為20【解析】
利用相互獨立事件概率公式求解即可;由題意知,隨機變量可能的取值為0,10,20,30,分別求出對應的概率,列出分布列并代入數(shù)學期望公式求解即可.【詳解】(1)由相互獨立事件概率公式可得,(2)由題意知,隨機變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《種樹郭橐駝傳》教案
- 買賣合同范本電子合同
- 協(xié)議酒店招標合同范本
- 出國焊工勞務合同范本
- 買車定金有效合同范本
- 《動物聚會》教學反思
- 北京期房合同范本
- 雙方股權協(xié)議合同范本
- “放飛愛心”募捐義賣活動策劃書
- 分配工作合同范本
- 《紅巖》中考試題(截至2024年)
- 2025年合肥職業(yè)技術學院單招職業(yè)適應性測試題庫完整版
- 2025年黑龍江旅游職業(yè)技術學院單招職業(yè)傾向性測試題庫匯編
- 2025年湖南城建職業(yè)技術學院單招職業(yè)技能測試題庫新版
- 國家基本藥物臨床應用指南
- 企業(yè)級軟件開發(fā)作業(yè)指導書
- 《中國古代文學史及作品選II》教學大綱
- 代工生產(chǎn)合同范本
- 人教版英語2025七年級下冊 Unit1Animal Friends教師版 語法講解+練習
- 人教版(2024)六年級全一冊 第16課 智能種植初探秘
- 中考數(shù)學第二輪復習教案
評論
0/150
提交評論