貴州省畢節(jié)二中2025屆高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
貴州省畢節(jié)二中2025屆高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
貴州省畢節(jié)二中2025屆高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
貴州省畢節(jié)二中2025屆高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
貴州省畢節(jié)二中2025屆高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省畢節(jié)二中2025屆高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,已知a,b,c分別為,,所對的邊,且a,b,c成等差數(shù)列,,,則()A. B. C. D.2.已知點,點滿足線性約束條件O為坐標原點,那么的最小值是A. B. C. D.3.已知平面向量,,且,則=A. B. C. D.4.函數(shù)的最小正周期是()A. B. C. D.5.若樣本的平均數(shù)為10,其方差為2,則對于樣本的下列結論正確的是A.平均數(shù)為20,方差為8 B.平均數(shù)為20,方差為10C.平均數(shù)為21,方差為8 D.平均數(shù)為21,方差為106.一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是A.兩次都中靶B.至少有一次中靶C.兩次都不中靶D.只有一次中靶7.已知,若,則()A. B. C. D.8.如圖,在圓心角為直角的扇形中,分別以為直徑作兩個半圓,在扇形內隨機取一點,則此點取自陰影部分的概率是()A. B. C. D.9.已知a、b是兩條不同的直線,、是兩個不同的平面,若,,,則下列三個結論:①、②、③.其中正確的個數(shù)為()A.0 B.1 C.2 D.310.已知三棱錐中,,,則三棱錐的外接球的表面積為()A. B.4 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不等式x(2x﹣1)<0的解集是_____.12.已知等差數(shù)列的前n項和為,若,,,則________13.為等比數(shù)列,若,則_______.14.對于數(shù)列,若存在,使得,則刪去,依此操作,直到所得到的數(shù)列沒有相同項,將最后得到的數(shù)列稱為原數(shù)列的“基數(shù)列”.若,則數(shù)列的“基數(shù)列”的項數(shù)為__________________.15.已知,則__________.16.在《九章算術·商功》中將四個面均為直角三角形的三棱錐稱為鱉臑(biēnào),在如下圖所示的鱉臑中,,,,則的直角頂點為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐中,底面為平行四邊形,,,底面.(1)證明:;(2)設,求點到面的距離.18.如圖是某地某公司名員工的月收入后的直方圖.根據(jù)直方圖估計:(1)該公司月收入在元到元之間的人數(shù);(2)該公司員工的月平均收入.19.已知離心率為的橢圓過點.(1)求橢圓的方程;(2)過點作斜率為直線與橢圓相交于兩點,求的長.20.如圖,在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱錐P-ABC的體積;(2)異面直線BC與AD所成的角的大小(結果用反三角函數(shù)值表示).21.據(jù)說偉大的阿基米德逝世后,敵軍將領馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.(1)試計算出圖案中球與圓柱的體積比;(2)假設球半徑.試計算出圖案中圓錐的體積和表面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用成等差數(shù)列可得,再利用余弦定理構造的結構再代入求得即可.【詳解】由成等差數(shù)列可得,由余弦定理有,即,解得,即.故選:B【點睛】本題主要考查了等差中項與余弦定理的運算,需要根據(jù)題意構造與的結構代入求解.屬于中檔題.2、D【解析】

點滿足線性約束條件∵令目標函數(shù)畫出可行域如圖所示,聯(lián)立方程解得在點處取得最小值:故選D【點睛】此題主要考查簡單的線性規(guī)劃問題以及向量的內積的問題,解決此題的關鍵是能夠找出目標函數(shù).3、B【解析】

根據(jù)向量平行求出x的值,結合向量模長的坐標公式進行求解即可.【詳解】且,則故故選B.【點睛】本題考查向量模長的計算,根據(jù)向量平行的坐標公式求出x的值是解決本題的關鍵.4、C【解析】

將函數(shù)化為,再根據(jù)周期公式可得答案.【詳解】因為=,所以最小正周期.故選:C【點睛】本題考查了兩角和的正弦公式的逆用,考查了正弦型函數(shù)的周期公式,屬于基礎題.5、A【解析】

利用和差積的平均數(shù)和方差公式解答.【詳解】由題得樣本的平均數(shù)為,方差為.故選A【點睛】本題主要考查平均數(shù)和方差的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.6、A【解析】

利用對立事件、互斥事件的定義直接求解.【詳解】一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是兩次都中靶.故選:A.【點睛】本題考查互事件的判斷,是中檔題,解題時要認真審題,注意對立事件、互斥事件的定義的合理運用.7、C【解析】

由,得,則,則.【考點定位】8、A【解析】試題分析:設扇形半徑為,此點取自陰影部分的概率是,故選B.考點:幾何概型.【方法點晴】本題主要考查幾何概型,綜合性較強,屬于較難題型.本題的總體思路較為簡單:所求概率值應為陰影部分的面積與扇形的面積之比.但是,本題的難點在于如何求陰影部分的面積,經分析可知陰影部分的面積可由扇形面積減去以為直徑的圓的面積,再加上多扣一次的近似“橢圓”面積.求這類圖形面積應注意切割分解,“多還少補”.9、C【解析】

根據(jù)題意,,,,則有,因此,,不難判斷.【詳解】因為,,,則有,所以,,所以①正確,②不正確,③正確,則其中正確命題的個數(shù)為2.故選C【點睛】本題考查空間中直線與平面之間的位置關系,考查空間推理能力,屬于簡單題.10、B【解析】

依據(jù)題中數(shù)據(jù),利用勾股定理可判斷出從而可得三棱錐各面都為直角三角形,進而可知外接圓的直徑,即可求出三棱錐的外接球的表面積【詳解】如圖,因為,又,,從而可得三棱錐各面都為直角三角形,CD是三棱錐的外接球的直徑,在中,,,即,,故選B.【點睛】本題主要考查學生空間想象以及數(shù)學建模能力,能夠依據(jù)條件建立合適的模型是解題的關鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

求出不等式對應方程的實數(shù)根,即可寫出不等式的解集,得到答案.【詳解】由不等式對應方程的實數(shù)根為0和,所以該不等式的解集是.故答案為:.【點睛】本題主要考查了一元二次不等式的解法,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12、1【解析】

由題意首先求得數(shù)列的公差,然后結合通項公式確定m的值即可.【詳解】根據(jù)題意,設等差數(shù)列公差為d,則,又由,,則,,則,解可得;故答案為1.【點睛】本題考查等差數(shù)列的性質,關鍵是掌握等差數(shù)列的通項公式,屬于中等題.13、【解析】

將這兩式中的量全部用表示出來,正好有兩個方程,兩個未知數(shù),解方程組即可求出?!驹斀狻肯喈斢?,相當于,上面兩式相除得代入就得,【點睛】基本量法是解決數(shù)列計算題最重要的方法,即將條件全部用首項和公比表示,列方程,解方程即可求得。14、10【解析】

由題意可得,只需計算所有可能取值的個數(shù)即可.【詳解】因為求的可能取值個數(shù),由周期性,故只需考慮的情況即可.此時.一共19個取值,故只需分析,又由,故,,即不同的取值個數(shù)一共為個.即“基數(shù)列”分別為和共10項.故答案為10【點睛】本題主要考查余弦函數(shù)的周期性.注意到隨著的增大的值周期變化,故只需考慮一個周期內的情況.15、【解析】

對已知等式的左右兩邊同時平方,利用同角的三角函數(shù)關系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【詳解】因為,所以,即,所以.【點睛】本題考查了同角的三角函數(shù)關系,考查了二倍角的正弦公式和余弦公式,考查了數(shù)學運算能力.16、【解析】

根據(jù),可得平面,進而可得,再由,證明平面,即可得出,是的直角頂點.【詳解】在三棱錐中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角頂點為.故答案為:.【點睛】本題考查了直線與直線以及直線與平面垂直的應用問題,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】試題分析:(Ⅰ)要證明線線垂直,一般用到線面垂直的性質定理,即先要證線面垂直,首先由已知底面.知,因此要證平面,從而只要證,這在中可證;(Ⅱ)要求點到平面的距離,可過點作平面的垂線,由(Ⅰ)的證明,可得平面,從而有平面,因此平面平面,因此只要過作于,則就是的要作的垂線,線段的長就是所要求的距離.試題解析:(Ⅰ)證明:因為,,由余弦定理得.從而,∴,又由底面,面,可得.所以平面.故.(Ⅱ)解:作,垂足為.已知底面,則,由(Ⅰ)知,又,所以.故平面,.則平面.由題設知,,則,,根據(jù),得,即點到面的距離為.考點:線面垂直的判定與性質.點到平面的距離.18、(1);(2).【解析】

(1)根據(jù)頻率分布直方圖得出該公司月收入在元到元的員工所占的頻率,再乘以可得出所求結果;(2)將每個矩形底邊的中點值乘以對應矩形的面積,再將所得的積全部相加可得出該公司員工月收入的平均數(shù).【詳解】(1)根據(jù)頻率分布直方圖知,該公司月收入在元到元的員工所占的頻率為:,因此,該公司月收入在元到元之間的人數(shù)為;(2)據(jù)題意該公司員工的平均收入為:(元).【點睛】本題考查頻率分布直方圖的應用,考查頻數(shù)的計算以及平均數(shù)的計算,解題時要注意頻數(shù)、平均數(shù)的計算原則,考查計算能力,屬于基礎題.19、(1)(2)【解析】

(1)根據(jù)離心率可得的關系,將點代入橢圓方程,可得橢圓方程;(2)直線方程與橢圓方程聯(lián)立,可得弦長.【詳解】(1),又,,即橢圓方程是,代入點,可得,橢圓方程是.(2)設直線方程是,聯(lián)立橢圓方程代入可得.【點睛】本題考查了橢圓方程和直線與橢圓的位置關系,涉及弦長公式,屬于簡單題.20、(1);(2).【解析】

(1),三棱錐P-ABC的體積為.(2)取PB的中點E,連接DE、AE,則ED∥BC,所以∠ADE(或其補角)是異面直線BC與AD所成的角.在三角形ADE中,DE=2,AE=,AD=2,,所以∠ADE=.因此,異面直線BC與AD所成的角的大小是.21、(1);(2)圓錐體積

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論