成都市新都一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題含解析_第1頁
成都市新都一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題含解析_第2頁
成都市新都一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題含解析_第3頁
成都市新都一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題含解析_第4頁
成都市新都一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

成都市新都一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如下圖是一個正方體的平面展開圖,在這個正方體中①②與成角③與為異面直線④以上四個命題中,正確的序號是()A.①②③ B.②④ C.③④ D.②③④2.已知實數(shù)x,y滿足約束條件y≤1x≤2x+2y-2≥0,則A.1 B.2 C.3 D.43.在中,角所對的邊分別為,若.且,則的值為()A. B.C. D.或4.要從已編號(1~50)的50枚最新研制的某型導(dǎo)彈中隨機抽取5枚來進行發(fā)射試驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5枚導(dǎo)彈的編號可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,325.某小組由名男生、名女生組成,現(xiàn)從中選出名分別擔(dān)任正、副組長,則正、副組長均由男生擔(dān)任的概率為()A. B. C. D.6.已知過點的直線的傾斜角為,則直線的方程為()A. B. C. D.7.設(shè)在中,角所對的邊分別為,若,則的形狀為()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不確定8.已知點,直線方程為,且直線與線段相交,求直線的斜率k的取值范圍為()A.或 B.或C. D.9.已知一扇形的周長為,圓心角為,則該扇形的面積為()A. B. C. D.10.設(shè)的內(nèi)角所對的邊分別為,且,已知的面積等于,,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若等比數(shù)列滿足,且公比,則_____.12.已知圓錐的底面半徑為3,體積是,則圓錐側(cè)面積等于___________.13.用數(shù)學(xué)歸納法證明“”,在驗證成立時,等號左邊的式子是______.14.在等差數(shù)列中,若,則__________.15.已知函數(shù)的最小正周期為,若將該函數(shù)的圖像向左平移個單位后,所得圖像關(guān)于原點對稱,則的最小值為________.16.設(shè)常數(shù),函數(shù),若的反函數(shù)的圖像經(jīng)過點,則_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角所對的邊分別為,已知,.(1)求的值;(2)若,求周長的取值范圍.18.某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:月份123456銷售量x(萬件)1011131286利潤y(萬元)222529261612附:(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過萬元,則認(rèn)為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,)19.設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,(Ⅰ)求B的大小;(Ⅱ)若,求的取值范圍.20.已知數(shù)列滿足關(guān)系式,.(1)用表示,,;(2)根據(jù)上面的結(jié)果猜想用和表示的表達式,并用數(shù)學(xué)歸納法證之.21.如圖,已知以點為圓心的圓與直線相切.過點的動直線與圓A相交于M,N兩點,Q是的中點,直線與相交于點P.(1)求圓A的方程;(2)當(dāng)時,求直線的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由已知中正方體的平面展開圖,得到正方體的直觀圖如上圖所示:

由正方體的幾何特征可得:①不平行,不正確;

②AN∥BM,所以,CN與BM所成的角就是∠ANC=60°角,正確;③與不平行、不相交,故異面直線與為異面直線,正確;

④易證,故,正確;故選D.2、C【解析】

作出可行域,作直線l:x+y=0,平移直線l可得最優(yōu)解.【詳解】作出可行域,如圖ΔABC內(nèi)部(含邊界),作直線l:x+y=0,平移直線l,當(dāng)直線l過點C(2,1)時,x+y=2+1=3為最大值.故選C.【點睛】本題考查簡單的線性規(guī)劃,解題關(guān)鍵是作出可行域.3、D【解析】

首先根據(jù)余弦定理,得到或.再分別計算即可.【詳解】因為,所以,即:,解得:或.當(dāng)時,.當(dāng)時,.所以或.故選:D【點睛】本題主要考查余弦定理解三角形,熟記公式為解題的關(guān)鍵,屬于中檔題.4、B【解析】

對導(dǎo)彈進行平均分組,根據(jù)系統(tǒng)抽樣的基本原則可得結(jié)果.【詳解】將50枚導(dǎo)彈平均分為5組,可知每組50÷5=10枚導(dǎo)彈即分組為:1~10,11~20,21~30,31~40,41~50按照系統(tǒng)抽樣原則可知每組抽取1枚,且編號成公差為10的等差數(shù)列由此可確定B正確本題正確選項:B【點睛】本題考查抽樣方法中的系統(tǒng)抽樣,屬于基礎(chǔ)題.5、B【解析】

根據(jù)古典概型的概率計算公式,先求出基本事件總數(shù),正、副組長均由男生擔(dān)任包含的基本事件總數(shù),由此能求出正、副組長均由男生擔(dān)任的概率.【詳解】某小組由2名男生、2名女生組成,現(xiàn)從中選出2名分別擔(dān)任正、副組長,基本事件總數(shù),正、副組長均由男生擔(dān)任包含的基本事件總數(shù),正、副組長均由男生擔(dān)任的概率為.故選.【點睛】本題主要考查古典概型的概率求法。6、B【解析】

由直線的傾斜角求得直線的斜率,再由直線的點斜式方程求解.【詳解】∵直線的傾斜角為,∵直線的斜率,又直線過點,由直線方程的點斜式可得直線的方程為,即.故選:B.【點睛】本題考查直線的點斜式方程,考查直線的傾斜角與斜率的關(guān)系,是基礎(chǔ)題.7、B【解析】

利用正弦定理可得,結(jié)合三角形內(nèi)角和定理與誘導(dǎo)公式可得,從而可得結(jié)果.【詳解】因為,所以由正弦定理可得,,所以,所以是直角三角形.【點睛】本題主要考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.弦定理是解三角形的有力工具,其常見用法有以下幾種:(1)知道兩邊和一邊的對角,求另一邊的對角(一定要注意討論鈍角與銳角);(2)知道兩角與一個角的對邊,求另一個角的對邊;(3)證明化簡過程中邊角互化;(4)求三角形外接圓半徑.8、A【解析】

先求出線段的方程,得出,在直線的方程中得到,將代入的表達式,利用不等式的性質(zhì)求出的取值范圍.【詳解】易求得線段的方程為,得,由直線的方程得,當(dāng)時,,此時,;當(dāng)時,,此時,.因此,實數(shù)的取值范圍是或,故選A.【點睛】本題考查斜率取值范圍的計算,可以利用數(shù)形結(jié)合思想,觀察傾斜角的變化得出斜率的取值范圍,也可以利用參變量分離,得出斜率的表達式,利用不等式的性質(zhì)得出斜率的取值范圍,考查計算能力,屬于中等題.9、C【解析】

根據(jù)題意設(shè)出扇形的弧長與半徑,通過扇形的周長與弧長公式即可求出扇形的弧長與半徑,進而根據(jù)扇形的面積公式即可求解.【詳解】設(shè)扇形的弧長為,半徑為,扇形的圓心角的弧度數(shù)是.

則由題意可得:.

可得:,解得:,.可得:故選:C【點睛】本題主要考查扇形的周長與扇形的面積公式的應(yīng)用,以及考查學(xué)生的計算能力,屬于基礎(chǔ)題.10、D【解析】

由正弦定理化簡已知,結(jié)合,可求,利用同角三角函數(shù)基本關(guān)系式可求,進而利用三角形的面積公式即可解得的值.【詳解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面積,解得.故選:.【點睛】本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

利用等比數(shù)列的通項公式及其性質(zhì)即可得出.【詳解】,故答案為:1.【點睛】本題考查了等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于容易題.12、【解析】試題分析:求圓錐側(cè)面積必須先求圓錐母線,既然已知體積,那么可先求出圓錐的高,再利用圓錐的性質(zhì)(圓錐的高,底面半徑,母線組成直角三角形)可得母線,,,,.考點:圓錐的體積與面積公式,圓錐的性質(zhì).13、【解析】

根據(jù)左邊的式子是從開始,結(jié)束,且指數(shù)依次增加1求解即可.【詳解】因為左邊的式子是從開始,結(jié)束,且指數(shù)依次增加1所以,左邊的式子為,故答案為.【點睛】項數(shù)的變化規(guī)律,是利用數(shù)學(xué)歸納法解答問題的基礎(chǔ),也是易錯點,要使問題順利得到解決,關(guān)鍵是注意兩點:一是首尾兩項的變化規(guī)律;二是相鄰兩項之間的變化規(guī)律.14、【解析】

利用等差數(shù)列廣義通項公式,將轉(zhuǎn)化為,從而求出的值,再由廣義通項公式求得.【詳解】在等差數(shù)列中,由,,得,即..故答案為:1.【點睛】本題考查等差數(shù)列廣義通項公式的運用,考查基本量法求解數(shù)列問題,屬于基礎(chǔ)題.15、【解析】

先利用周期公式求出,再利用平移法則得到新的函數(shù)表達式,依據(jù)函數(shù)為奇函數(shù),求出的表達式,即可求出的最小值.【詳解】由得,所以,向左平移個單位后,得到,因為其圖像關(guān)于原點對稱,所以函數(shù)為奇函數(shù),有,則,故的最小值為.【點睛】本題主要考查三角函數(shù)的性質(zhì)以及圖像變換,以及型的函數(shù)奇偶性判斷條件.一般地為奇函數(shù),則;為偶函數(shù),則;為奇函數(shù),則;為偶函數(shù),則.16、1【解析】

反函數(shù)圖象過(2,1),等價于原函數(shù)的圖象過(1,2),代點即可求得.【詳解】依題意知:f(x)=lg(x+a)的圖象過(1,2),∴l(xiāng)g(1+a)=2,解得a=1.故答案為:1【點睛】本題考查了反函數(shù),熟記其性質(zhì)是關(guān)鍵,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3;(2).【解析】

(1)先用二倍角公式化簡,再根據(jù)正弦定理即可解出;(2)用正弦定理分別表示,再用三角形內(nèi)角和及和差公式化簡,轉(zhuǎn)化為三角函數(shù)求最值.【詳解】(1)由及二倍角公式得,又即,所以;(2)由正弦定理得,周長:,又因為,所以.因此周長的取值范圍是.【點睛】本題考查了正余弦定理解三角形,三角形求邊長取值范圍常用的方法:1、轉(zhuǎn)化為三角函數(shù)求最值;2、基本不等式.18、(1);(2)見解析.【解析】

(1)求出,由公式,得的值,從而求出的值,從而得到關(guān)于的線性回歸方程;(2)將月份和月份的銷售量值代入回歸直線方程,求出預(yù)測值,并計算預(yù)測值與實際值之間的誤差,結(jié)合題意來判斷(1)中所得回歸直線方程是否理想?!驹斀狻浚?)計算得,,,則,;故關(guān)于的回歸直線方程為.(2)當(dāng)時,,此時;當(dāng)時,,此時.故所得的回歸直線方程是理想的.【點睛】本題考查回歸直線方程的應(yīng)用,解題的關(guān)鍵就是弄清楚最小二乘法公式,并準(zhǔn)確代入數(shù)據(jù)計算,著重考察計算能力,屬于中等題。19、(1)(2)【解析】

(Ⅰ)由條件利用正弦定理求得sinB的值,可得B的值(Ⅱ)使用正弦定理用sinA,sinC表示出a,c,得出a+c關(guān)于A的三角函數(shù),根據(jù)A的范圍和正弦函數(shù)的性質(zhì)得出a+c的最值.【詳解】解(Ⅰ)銳角又,,由正弦定理得,∴.

∴的取值范圍為【點睛】本題主要考查正弦定理,余弦定理的應(yīng)用,基本不等式的應(yīng)用,屬于基礎(chǔ)題.20、(1),,(2)猜想:,證明見解析【解析】

(1)根據(jù)遞推關(guān)系依次代入求解,(2)根據(jù)規(guī)律猜想,再利用數(shù)學(xué)歸納法證明【詳解】解:(1),∴,,;(2)猜想:.證明:當(dāng)時,結(jié)論顯然成立;假設(shè)時結(jié)論成立,即,則時,,即時結(jié)論成立.綜上,對時結(jié)論成立.【點睛】本題考查歸納猜想與數(shù)學(xué)歸納法證明,考查基本分析論證能力,屬基礎(chǔ)題21、(1).(2)或【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論