版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省南昌市東湖區(qū)第十中學(xué)高三下學(xué)期一??荚囆赂呖紨?shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)點,,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件2.函數(shù)與的圖象上存在關(guān)于直線對稱的點,則的取值范圍是()A. B. C. D.3.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.4.已知是的共軛復(fù)數(shù),則()A. B. C. D.5.已知函數(shù)若恒成立,則實數(shù)的取值范圍是()A. B. C. D.6.已知函數(shù),若函數(shù)的所有零點依次記為,且,則()A. B. C. D.7.在關(guān)于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.在展開式中的常數(shù)項為A.1 B.2 C.3 D.79.若,滿足約束條件,則的取值范圍為()A. B. C. D.10.《周易》歷來被人們視作儒家群經(jīng)之首,它表現(xiàn)了古代中華民族對萬事萬物的深刻而又樸素的認(rèn)識,是中華人文文化的基礎(chǔ),它反映出中國古代的二進(jìn)制計數(shù)的思想方法.我們用近代術(shù)語解釋為:把陽爻“-”當(dāng)作數(shù)字“1”,把陰爻“--”當(dāng)作數(shù)字“0”,則八卦所代表的數(shù)表示如下:卦名符號表示的二進(jìn)制數(shù)表示的十進(jìn)制數(shù)坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進(jìn)制數(shù)是()A.18 B.17 C.16 D.1511.已知拋物線上一點的縱坐標(biāo)為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.512.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知二項式的展開式中各項的二項式系數(shù)和為512,其展開式中第四項的系數(shù)__________.14.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當(dāng)甲、乙兩人都參加時,他們參加社區(qū)服務(wù)的日期不相鄰,那么不同的安排種數(shù)為______________.(用數(shù)字作答)15.某次足球比賽中,,,,四支球隊進(jìn)入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進(jìn)入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.16.在中,內(nèi)角所對的邊分別是.若,,則__,面積的最大值為___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(I)當(dāng)時,解不等式.(II)若不等式恒成立,求實數(shù)的取值范圍18.(12分)已知函數(shù).(1)若關(guān)于的不等式的整數(shù)解有且僅有一個值,當(dāng)時,求不等式的解集;(2)已知,若,使得成立,求實數(shù)的取值范圍.19.(12分)在直角坐標(biāo)系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側(cè))滿足,且的周長為,求的值.20.(12分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設(shè)橢圓的離心率為,當(dāng)點為橢圓的右頂點時,的坐標(biāo)為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標(biāo)方程;(2)設(shè)直線與曲線交于兩點,求的取值范圍.22.(10分)曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線,的交點分別為、(、異于原點),當(dāng)斜率時,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用向量垂直的表示、向量數(shù)量積的運(yùn)算,結(jié)合充分必要條件的定義判斷即可.【詳解】由于點,,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.2、C【解析】
由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當(dāng)時,;當(dāng)時,,故時,取得極大值,也即為最大值,當(dāng)趨近于時,趨近于,所以滿足條件.故選:C.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運(yùn)算求解等數(shù)學(xué)能力,屬于難題.3、A【解析】
分子分母同乘分母的共軛復(fù)數(shù)即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生運(yùn)算能力,是一道容易題.4、A【解析】
先利用復(fù)數(shù)的除法運(yùn)算法則求出的值,再利用共軛復(fù)數(shù)的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.5、D【解析】
由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因為由恒成立,分別作出及的圖象,由圖知,當(dāng)時,不符合題意,只須考慮的情形,當(dāng)與圖象相切于時,由導(dǎo)數(shù)幾何意義,此時,故.故選:D【點睛】此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結(jié)合的思想,屬于難題.6、C【解析】
令,求出在的對稱軸,由三角函數(shù)的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數(shù)周期,令,可得.則函數(shù)在上有8條對稱軸.根據(jù)正弦函數(shù)的性質(zhì)可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數(shù)的對稱性,考查了三角函數(shù)的周期性,考查了等差數(shù)列求和.本題的難點是將所求的式子拆分為的形式.7、C【解析】
討論當(dāng)時,是否恒成立;討論當(dāng)恒成立時,是否成立,即可選出正確答案.【詳解】解:當(dāng)時,,由開口向上,則恒成立;當(dāng)恒成立時,若,則不恒成立,不符合題意,若時,要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個命題的關(guān)系時,一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.8、D【解析】
求出展開項中的常數(shù)項及含的項,問題得解?!驹斀狻空归_項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉(zhuǎn)化思想,考查計算能力,屬于基礎(chǔ)題。9、B【解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點,相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過點時,取得最小值-5;經(jīng)過點時,取得最大值5,故.故選:B【點睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.10、B【解析】
由題意可知“屯”卦符號“”表示二進(jìn)制數(shù)字010001,將其轉(zhuǎn)化為十進(jìn)制數(shù)即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進(jìn)制數(shù)字010001,轉(zhuǎn)化為十進(jìn)制數(shù)的計算為1×20+1×24=1.故選:B.【點睛】本題主要考查數(shù)制是轉(zhuǎn)化,新定義知識的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.11、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標(biāo)為,準(zhǔn)線方程為,因為點A的縱坐標(biāo)為4,所以點A到拋物線準(zhǔn)線的距離為,因為拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應(yīng)用拋物線定義和拋物線上點的性質(zhì)拋物線上的點到焦點的距離,考查學(xué)生的運(yùn)算求解能力.點評:拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運(yùn)算.12、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先令可得其展開式各項系數(shù)的和,又由題意得,解得,進(jìn)而可得其展開式的通項,即可得答案.【詳解】令,則有,解得,則二項式的展開式的通項為,令,則其展開式中的第4項的系數(shù)為,故答案為:【點睛】此題考查二項式定理的應(yīng)用,解題時需要區(qū)分展開式中各項系數(shù)的和與各二項式系數(shù)和,屬于基礎(chǔ)題.14、5040.【解析】分兩類,一類是甲乙都參加,另一類是甲乙中選一人,方法數(shù)為。填5040.【點睛】利用排列組合計數(shù)時,關(guān)鍵是正確進(jìn)行分類和分步,分類時要注意不重不漏.在本題中,甲與乙是兩個特殊元素,對于特殊元素“優(yōu)先法”,所以有了分類。本題還涉及不相鄰問題,采用“插空法”。15、0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類討論B或D進(jìn)入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點睛】本題考查了獨(dú)立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.16、1【解析】
由正弦定理,結(jié)合,,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【詳解】因為,所以由正弦定理可得,所以;所以,當(dāng),即時,三角形面積最大.故答案為(1).1(2).【點睛】本題主要考查解三角形的問題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎(chǔ)題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】試題分析:(1)根據(jù)零點分區(qū)間法,去掉絕對值解不等式;(2)根據(jù)絕對值不等式的性質(zhì)得,因此將問題轉(zhuǎn)化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質(zhì)得:,要使不等式恒成立,則當(dāng)時,不等式恒成立;當(dāng)時,解不等式得.綜上.所以實數(shù)的取值范圍為.18、(1)(2)【解析】
(1)求解不等式,結(jié)合整數(shù)解有且僅有一個值,可得,分類討論,求解不等式,即得解;(2)轉(zhuǎn)化,使得成立為,利用不等式性質(zhì),求解二次函數(shù)最小值,代入解不等式即可.【詳解】(1)不等式,即,所以,由,解得.因為,所以,當(dāng)時,,不等式等價于或或即或或,故,故不等式的解集為.(2)因為,由,可得,又由,使得成立,則,解得或.故實數(shù)的取值范圍為.【點睛】本題考查了絕對值不等式的求解和恒成立問題,考查了學(xué)生轉(zhuǎn)化劃歸,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.19、(1);(2)【解析】
(1)設(shè),則由題設(shè)條件可得,化簡后可得軌跡的方程.(2)設(shè)直線,聯(lián)立直線方程和拋物線方程后利用韋達(dá)定理化簡并求得,結(jié)合焦半徑公式及弦長公式可求的值及的長.【詳解】(1)設(shè),則圓心的坐標(biāo)為,因為以線段為直徑的圓與軸相切,所以,化簡得的方程為.(2)由題意,設(shè)直線,聯(lián)立得,設(shè)(其中)所以,,且,因為,所以,,所以,故或(舍),直線,因為的周長為所以.即,因為.又,所以,解得,所以.【點睛】本題考查曲線方程以及拋物線中的弦長計算,還涉及到向量的數(shù)量積.一般地,拋物線中的弦長問題,一般可通過聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把已知等式化為關(guān)于兩個的交點橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為某一個變量的方程.本題屬于中檔題.20、(1);(2)不存在,理由見解析【解析】
(1)寫出,根據(jù),斜率乘積為-1,建立等量關(guān)系求解離心率;(2)寫出直線AB的方程,根據(jù)韋達(dá)定理求出點B的坐標(biāo),計算出弦長,根據(jù)垂直關(guān)系同理可得,利用等式即可得解.【詳解】(1)由題可得,過點作直線交橢圓于點,且,直線交軸于點.點為橢圓的右頂點時,的坐標(biāo)為,即,,化簡得:,即,解得或(舍去),所以;(2)橢圓的方程為,由(1)可得,聯(lián)立得:,設(shè)B的橫坐標(biāo),根據(jù)韋達(dá)定理,即,,所以,同理可得若存在使得成立,則,化簡得:,,此方程無解,所以不存在使得成立.【點睛】此題考查求橢圓離心率,根據(jù)直線與橢圓的位置關(guān)系解決弦長問題,關(guān)鍵在于熟練掌握解析幾何常用方法,尤其是韋達(dá)定理在解決解析幾何問題中的應(yīng)用.21、(1)的極坐標(biāo)方程為,普通方程為;(2)【解析】
(1)根據(jù)三角函數(shù)恒等變換可得,,可得曲線的普通方程,再運(yùn)用圖像的平移得依題意得曲線的普通方程為,利用極坐標(biāo)與平面直角坐標(biāo)互化的公式可得方程;(2)法一:將代入曲線的極坐標(biāo)方程得,運(yùn)用韋達(dá)定理可得,根據(jù),可求得的范圍;法二:設(shè)直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,運(yùn)用韋達(dá)定理可得,根據(jù),可求得的范圍;【詳解】(1),,即曲線的普通方程為,依題意得曲線的普通方程為,令,得曲線的極坐標(biāo)方程為;(2)法一:將代入曲線的極坐標(biāo)方程得,則,,,異號,,,;法二:設(shè)直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,則,,,異號,,.【點睛】本題考查參數(shù)方程與普通方程,極坐標(biāo)方程與平面直角坐標(biāo)方程之間的轉(zhuǎn)化,求解幾何量的取值范
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國汽車機(jī)油泵市場運(yùn)行狀況與前景趨勢分析報告
- 2025-2030年中國汽車再制造產(chǎn)業(yè)市場運(yùn)行狀況及未來發(fā)展趨勢預(yù)測報告
- 2025年綠色環(huán)保膩子材料銷售合作協(xié)議3篇
- 2025年度林業(yè)病蟲害防治承包合同范本4篇
- 2025年水稻種植與農(nóng)業(yè)科技成果轉(zhuǎn)化合作協(xié)議3篇
- 2025版旅游行業(yè)安全風(fēng)險評估與應(yīng)急預(yù)案合同4篇
- 2025年度龍湖一期項目土石方施工進(jìn)度款支付合同4篇
- 二零二五版KTV員工薪酬福利調(diào)整與激勵合同3篇
- 2025年新版填土工程環(huán)保驗收填土協(xié)議書示例2篇
- 2025年度碼頭集裝箱堆場租賃與維護(hù)服務(wù)合同4篇
- 意識障礙患者的護(hù)理診斷及措施
- 2024版《53天天練單元?dú)w類復(fù)習(xí)》3年級語文下冊(統(tǒng)編RJ)附參考答案
- 2025企業(yè)年會盛典
- 215kWh工商業(yè)液冷儲能電池一體柜用戶手冊
- 場地平整施工組織設(shè)計-(3)模板
- 交通設(shè)施設(shè)備供貨及技術(shù)支持方案
- 美容美發(fā)店火災(zāi)應(yīng)急預(yù)案
- 餐車移動食材配送方案
- 項目工程師年終總結(jié)課件
- 一年級口算練習(xí)題大全(可直接打印A4)
- 電動車棚消防應(yīng)急預(yù)案
評論
0/150
提交評論