江蘇省蘇州昆山市、太倉市2024屆中考押題數(shù)學預測卷含解析_第1頁
江蘇省蘇州昆山市、太倉市2024屆中考押題數(shù)學預測卷含解析_第2頁
江蘇省蘇州昆山市、太倉市2024屆中考押題數(shù)學預測卷含解析_第3頁
江蘇省蘇州昆山市、太倉市2024屆中考押題數(shù)學預測卷含解析_第4頁
江蘇省蘇州昆山市、太倉市2024屆中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省蘇州昆山市、太倉市2024屆中考押題數(shù)學預測卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某廠接到加工720件衣服的訂單,預計每天做48件,正好按時完成,后因客戶要求提前5天交貨,設每天應多做x件才能按時交貨,則x應滿足的方程為()A. B.C. D.2.小明和小亮按如圖所示的規(guī)則玩一次“錘子、剪刀、布”游戲,下列說法中正確的是()A.小明不是勝就是輸,所以小明勝的概率為 B.小明勝的概率是,所以輸?shù)母怕适荂.兩人出相同手勢的概率為 D.小明勝的概率和小亮勝的概率一樣3.下列事件中,必然事件是()A.拋擲一枚硬幣,正面朝上B.打開電視,正在播放廣告C.體育課上,小剛跑完1000米所用時間為1分鐘D.袋中只有4個球,且都是紅球,任意摸出一球是紅球4.如圖,矩形是由三個全等矩形拼成的,與,,,,分別交于點,設,,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.125.如圖是由長方體和圓柱組成的幾何體,它的俯視圖是()A. B. C. D.6.(2011?黑河)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)有下列結論:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,則其中結論正確的個數(shù)是() A、2個 B、3個 C、4個 D、5個7.已知等邊三角形的內(nèi)切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:38.下列方程中是一元二次方程的是()A. B.C. D.9.如圖,邊長為1的小正方形構成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠BED的正切值等于()A. B. C.2 D.10.已知點M、N在以AB為直徑的圓O上,∠MON=x°,∠MAN=y°,則點(x,y)一定在()A.拋物線上 B.過原點的直線上 C.雙曲線上 D.以上說法都不對二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長度為_____12.中,,,高,則的周長為______。13.若x=-1,則x2+2x+1=__________.14.在Rt△ABC中,∠C=90°,AB=2,BC=,則sin=_____.15.正多邊形的一個外角是60°,邊長是2,則這個正多邊形的面積為___________.16.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現(xiàn)將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.17.如圖,網(wǎng)格中的四個格點組成菱形ABCD,則tan∠DBC的值為___________.三、解答題(共7小題,滿分69分)18.(10分)如圖,某校一幢教學大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD、小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,然后沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,(斜坡的鉛直高度與水平寬度的比),經(jīng)過測量AB=10米,AE=15米,求點B到地面的距離;求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結果保留根號)19.(5分)如圖,∠BAO=90°,AB=8,動點P在射線AO上,以PA為半徑的半圓P交射線AO于另一點C,CD∥BP交半圓P于另一點D,BE∥AO交射線PD于點E,EF⊥AO于點F,連接BD,設AP=m.(1)求證:∠BDP=90°.(2)若m=4,求BE的長.(3)在點P的整個運動過程中.①當AF=3CF時,求出所有符合條件的m的值.②當tan∠DBE=時,直接寫出△CDP與△BDP面積比.20.(8分)如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.(1)求證:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.21.(10分)如圖,已知的直徑,是的弦,過點作的切線交的延長線于點,過點作,垂足為,與交于點,設,的度數(shù)分別是,,且.(1)用含的代數(shù)式表示;(2)連結交于點,若,求的長.22.(10分)某商店老板準備購買A、B兩種型號的足球共100只,已知A型號足球進價每只40元,B型號足球進價每只60元.(1)若該店老板共花費了5200元,那么A、B型號足球各進了多少只;(2)若B型號足球數(shù)量不少于A型號足球數(shù)量的,那么進多少只A型號足球,可以讓該老板所用的進貨款最少?23.(12分)已知關于的二次函數(shù)(1)當時,求該函數(shù)圖像的頂點坐標.(2)在(1)條件下,為該函數(shù)圖像上的一點,若關于原點的對稱點也落在該函數(shù)圖像上,求的值(3)當函數(shù)的圖像經(jīng)過點(1,0)時,若是該函數(shù)圖像上的兩點,試比較與的大小.24.(14分)如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2=(m≠0)的圖象交于點A(-1,6),B(a,-2).求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)圖象直接寫出y1>y2時,x的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

因客戶的要求每天的工作效率應該為:(48+x)件,所用的時間為:,根據(jù)“因客戶要求提前5天交貨”,用原有完成時間減去提前完成時間,可以列出方程:.故選D.2、D【解析】

利用概率公式,一一判斷即可解決問題.【詳解】A、錯誤.小明還有可能是平;B、錯誤、小明勝的概率是

,所以輸?shù)母怕适且彩牵籆、錯誤.兩人出相同手勢的概率為;D、正確.小明勝的概率和小亮勝的概率一樣,概率都是;故選D.【點睛】本題考查列表法、樹狀圖等知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、D【解析】試題解析:A.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;B.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;C.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;D.袋中只有4個球,且都是紅球,任意摸出一球是紅球,是必然事件,符合題意.故選D.點睛:事件分為確定事件和不確定事件.必然事件和不可能事件叫做確定事件.4、B【解析】

由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質,就可以求出,從而可以求出.【詳解】∵矩形AEHC是由三個全等矩形拼成的,

∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,

∴四邊形BEFD、四邊形DFGC是平行四邊形,

∴BE∥DF∥CG,

∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,

∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【點睛】本題考查了矩形的性質,平行四邊形的判定和性質,相似三角形的判定與性質,三角形的面積公式,得出S2=4S1,S3=9S1是解題關鍵.5、A【解析】分析:根據(jù)從上邊看得到的圖形是俯視圖,可得答案.詳解:從上邊看外面是正方形,里面是沒有圓心的圓,故選A.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.6、B【解析】分析:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進行推理,進而對所得結論進行判斷.解答:解:①根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以△=b2-4ac>0;故①正確;

②根據(jù)圖示知,該函數(shù)圖象的開口向上,

∴a>0;

故②正確;

③又對稱軸x=-=1,

∴<0,

∴b<0;

故本選項錯誤;

④該函數(shù)圖象交于y軸的負半軸,

∴c<0;

故本選項錯誤;

⑤根據(jù)拋物線的對稱軸方程可知:(-1,0)關于對稱軸的對稱點是(3,0);

當x=-1時,y<0,所以當x=3時,也有y<0,即9a+3b+c<0;故⑤正確.

所以①②⑤三項正確.

故選B.7、D【解析】試題分析:圖中內(nèi)切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內(nèi)切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點:正多邊形和圓.8、C【解析】

找到只含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,二次項系數(shù)不為0的整式方程的選項即可.【詳解】解:A、當a=0時,不是一元二次方程,故本選項錯誤;B、是分式方程,故本選項錯誤;C、化簡得:是一元二次方程,故本選項正確;D、是二元二次方程,故本選項錯誤;故選:C.【點睛】本題主要考查一元二次方程,熟練掌握一元二次方程的定義是解題的關鍵.9、D【解析】

根據(jù)同弧或等弧所對的圓周角相等可知∠BED=∠BAD,再結合圖形根據(jù)正切的定義進行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點睛】本題考查了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念,正確得出相等的角是解題關鍵.10、B【解析】

由圓周角定理得出∠MON與∠MAN的關系,從而得出x與y的關系式,進而可得出答案.【詳解】∵∠MON與∠MAN分別是弧MN所對的圓心角與圓周角,∴∠MAN=∠MON,∴,∴點(x,y)一定在過原點的直線上.故選B.【點睛】本題考查了圓周角定理及正比例函數(shù)圖像的性質,熟練掌握圓周角定理是解答本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進而可得到BF的長度;結合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為【點睛】此題考查矩形的性質和折疊問題,解題關鍵在于利用好折疊的性質12、32或42【解析】

根據(jù)題意,分兩種情況討論:①若∠ACB是銳角,②若∠ACB是鈍角,分別畫出圖形,利用勾股定理,即可求解.【詳解】分兩種情況討論:①若∠ACB是銳角,如圖1,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9+5+15+13=42,②若∠ACB是鈍角,如圖2,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9-5+15+13=32,故答案是:32或42.【點睛】本題主要考查勾股定理,根據(jù)題意,畫出圖形,分類進行計算,是解題的關鍵.13、2【解析】

先利用完全平方公式對所求式子進行變形,然后代入x的值進行計算即可.【詳解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案為:2.【點睛】本題考查了代數(shù)式求值,涉及了因式分解,二次根式的性質等,熟練掌握相關知識是解題的關鍵.14、【解析】

根據(jù)∠A的正弦求出∠A=60°,再根據(jù)30°的正弦值求解即可.【詳解】解:∵,∴∠A=60°,∴.故答案為.【點睛】本題考查了特殊角的三角函數(shù)值,熟記30°、45°、60°角的三角函數(shù)值是解題的關鍵.15、6【解析】

多邊形的外角和等于360°,因為所給多邊形的每個外角均相等,據(jù)此即可求得正多邊形的邊數(shù),進而求解.【詳解】正多邊形的邊數(shù)是:360°÷60°=6.正六邊形的邊長為2cm,由于正六邊形可分成六個全等的等邊三角形,且等邊三角形的邊長與正六邊形的邊長相等,所以正六邊形的面積.故答案是:.【點睛】本題考查了正多邊形的外角和以及正多邊形的計算,正六邊形可分成六個全等的等邊三角形,轉化為等邊三角形的計算.16、【解析】

判斷出即是中心對稱,又是軸對稱圖形的個數(shù),然后結合概率計算公式,計算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.17、3【解析】試題分析:如圖,連接AC與BD相交于點O,∵四邊形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案為3.考點:3.菱形的性質;3.解直角三角形;3.網(wǎng)格型.三、解答題(共7小題,滿分69分)18、(1)2;(2)宣傳牌CD高(20﹣1)m.【解析】試題分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到結果BH=ABsin∠BAH=1sin30°=1×=2;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如圖,過點B作BF⊥CE,垂足為F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得結果.試題解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.答:點B距水平面AE的高度BH是2米;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如圖,過點B作BF⊥CE,垂足為F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:廣告牌CD的高度約為(20﹣1)米.19、(1)詳見解析;(2)的長為1;(3)m的值為或;與面積比為或.【解析】

由知,再由知、,據(jù)此可得,證≌即可得;

易知四邊形ABEF是矩形,設,可得,證≌得,在中,由,列方程求解可得答案;

分點C在AF的左側和右側兩種情況求解:左側時由知、、,在中,由可得關于m的方程,解之可得;右側時,由知、、,利用勾股定理求解可得.作于點G,延長GD交BE于點H,由≌知,據(jù)此可得,再分點D在矩形內(nèi)部和外部的情況求解可得.【詳解】如圖1,,,,、,,,≌,.,,,,,四邊形ABEF是矩形,設,則,,,,,≌,,≌,,在中,,即,解得:,的長為1.如圖1,當點C在AF的左側時,,則,,,,在中,由可得,解得:負值舍去;如圖2,當點C在AF的右側時,,,,,,在中,由可得,解得:負值舍去;綜上,m的值為或;如圖3,過點D作于點G,延長GD交BE于點H,≌,,又,且,,當點D在矩形ABEF的內(nèi)部時,由可設、,則,,則;如圖4,當點D在矩形ABEF的外部時,由可設、,則,,則,綜上,與面積比為或.【點睛】本題考查了四邊形的綜合問題,解題的關鍵是掌握矩形的判定與性質、全等三角形的判定和性質及勾股定理、三角形的面積等知識點.20、(1)詳見解析;(2)OA=.【解析】

(1)連接OB,證明∠ABE=∠ADB,可得∠ABE=∠BDC,則∠ADB=∠BDC;

(2)證明△AEB∽△CBD,AB=x,則BD=2x,可求出AB,則答案可求出.【詳解】(1)證明:連接OB,∵BE為⊙O的切線,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直徑,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四邊形ABCD的外接圓為⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=,∴設AB=x,則BD=2x,∴,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴,∴,解得x=3,∴AB=x=15,∴OA=.【點睛】本題考查切線的性質、解直角三角形、勾股定理等知識,解題的關鍵是學會添加常用輔助線解決問題.21、(1);(2)【解析】

(1)連接OC,根據(jù)切線的性質得到OC⊥DE,可以證明AD∥OC,根據(jù)平行線的性質可得,則根據(jù)等腰三角形的性質可得,利用,化簡計算即可得到答案;

(2)連接CF,根據(jù),可得,利用中垂線和等腰三角形的性質可證四邊形是平行四邊形,得到△AOF為等邊三角形,由并可得四邊形是菱形,可證是等邊三角形,有∠FAO=60°,再根據(jù)弧長公式計算即可.【詳解】解:(1)如圖示,連結,∵是的切線,∴.又,∴,∴,∴.∵,∴.∴.∵,∴.∴,即.(2)如圖示,連結,∵,,∴,∴,∴,∴,∵,∴四邊形是平行四邊形,∵,∴四邊形是菱形,∴,∴是等邊三角形,∴,∴,∵,∴的長.【點睛】本題考查的是切線的性質、菱形的判定和性質、弧長的計算,掌握切線的性質定理、弧長公式是解題的關鍵.22、(1)A型足球進了40個,B型足球進了60個;(2)當x=60時,y最小=4800元.【解析】

(1)設A型足球x個,則B型足球(100-x)個,根據(jù)該店老板共花費了5200元列方程求解即可;(2)設進貨款為y元,根據(jù)題意列出函數(shù)關系式,根據(jù)B型號足球數(shù)量不少于A型號足球數(shù)量的求出x的取值范圍,然后根據(jù)一次函數(shù)的性質求解即可.【詳解】解:(1)設A型足球x個,則B型足球(100-x)個,∴40x+60(100-x)=5200,解得:x=40,∴100-x=100-40=60個,答:A型足球進了40個,B型足球進了60個.(2)設A型足球x個,則B型足球(100-x)個,100-x≥,解得:x≤60,設進貨款為y元,則y=40x+60(100-x)=-20x+6000,∵k=-20,∴y隨x的增大而減小,∴當x=60時,y最小=4800元.【點睛】本題考查了一元一次方程的應用,一次函數(shù)的應用,仔細審題,找出解決問題所需

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論