云南省德宏州高三“三診”模擬考試新高考數(shù)學試題試卷_第1頁
云南省德宏州高三“三診”模擬考試新高考數(shù)學試題試卷_第2頁
云南省德宏州高三“三診”模擬考試新高考數(shù)學試題試卷_第3頁
云南省德宏州高三“三診”模擬考試新高考數(shù)學試題試卷_第4頁
云南省德宏州高三“三診”模擬考試新高考數(shù)學試題試卷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省德宏州高三“三診”模擬考試新高考數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設曲線在點處的切線方程為,則()A.1 B.2 C.3 D.42.設,其中a,b是實數(shù),則()A.1 B.2 C. D.3.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽國內外.據(jù)統(tǒng)計,煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.95444.已知函數(shù),則不等式的解集為()A. B. C. D.5.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.6.已知函數(shù)與的圖象有一個橫坐標為的交點,若函數(shù)的圖象的縱坐標不變,橫坐標變?yōu)樵瓉淼谋逗?,得到的函?shù)在有且僅有5個零點,則的取值范圍是()A. B.C. D.7.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關8.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數(shù)超過天的月份有個B.第二季度與第一季度相比,空氣達標天數(shù)的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.9.已知公差不為0的等差數(shù)列的前項的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.4010.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立11.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個發(fā)彩色光的小燈泡且在背面用導線相連(弧的兩端各一個,導線接頭忽略不計),已知扇形的半徑為30厘米,則連接導線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米12.若的內角滿足,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在三棱錐A﹣BCD中,點E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AM=CN,則當四面體C﹣EMN的體積取得最大值時,三棱錐A﹣BCD的外接球的表面積為_____.14.已知函數(shù),對于任意都有,則的值為______________.15.已知函數(shù)f(x)=若關于x的方程f(x)=kx有兩個不同的實根,則實數(shù)k的取值范圍是________.16.已知為拋物線:的焦點,過作兩條互相垂直的直線,,直線與交于、兩點,直線與交于、兩點,則的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的長軸長為,離心率(1)求橢圓的方程;(2)設分別為橢圓與軸正半軸和軸正半軸的交點,是橢圓上在第一象限的一點,直線與軸交于點,直線與軸交于點,問與面積之差是否為定值?說明理由.18.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點,且滿足.(1)求證:直線平面;(2)求二面角的正弦值.19.(12分)已知函數(shù)與的圖象關于直線對稱.(為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經過點,求的值;(2)若不等式恒成立,求正整數(shù)的最小值.20.(12分)已知橢圓的右頂點為,為上頂點,點為橢圓上一動點.(1)若,求直線與軸的交點坐標;(2)設為橢圓的右焦點,過點與軸垂直的直線為,的中點為,過點作直線的垂線,垂足為,求證:直線與直線的交點在橢圓上.21.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.22.(10分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線交曲線于兩點,為中點.(1)求曲線的直角坐標方程和點的軌跡的極坐標方程;(2)若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

利用導數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導數(shù)的幾何意義,考查運算求解能力,是基礎題2、D【解析】

根據(jù)復數(shù)相等,可得,然后根據(jù)復數(shù)模的計算,可得結果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數(shù)模的計算,考驗計算,屬基礎題.3、C【解析】

根據(jù)服從的正態(tài)分布可得,,將所求概率轉化為,結合正態(tài)分布曲線的性質可求得結果.【詳解】由題意,,,則,,所以,.故果實直徑在內的概率為0.8185.故選:C【點睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎題.4、D【解析】

先判斷函數(shù)的奇偶性和單調性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調遞減.所以函數(shù)在上單調遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調性的判斷,考查函數(shù)的奇偶性和單調性的應用,意在考查學生對這些知識的理解掌握水平.5、B【解析】

利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【詳解】設拋物線的焦點為F,設點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.【點睛】本題考查拋物線的定義、標準方程,以及簡單性質的應用,利用拋物線的定義是解題的關鍵.6、A【解析】

根據(jù)題意,,求出,所以,根據(jù)三角函數(shù)圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個橫坐標為的交點,則,,,,,若函數(shù)圖象的縱坐標不變,橫坐標變?yōu)樵瓉淼谋?,則,所以當時,,在有且僅有5個零點,,.故選:A.【點睛】本題考查三角函數(shù)圖象的性質、三角函數(shù)的平移伸縮以及零點個數(shù)問題,考查轉化思想和計算能力.7、D【解析】

對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.8、D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.9、B【解析】

,將代入,求得公差d,再利用等差數(shù)列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數(shù)列的前n項和公式,考查等差數(shù)列基本量的計算,是一道容易題.10、C【解析】

A:否命題既否條件又否結論,故A錯.B:由正弦定理和邊角關系可判斷B錯.C:可判斷其逆否命題的真假,C正確.D:根據(jù)冪函數(shù)的性質判斷D錯.【詳解】解:A:“若,則”的否命題是“若,則”,故A錯.B:在中,,故“”是“”成立的必要充分條件,故B錯.C:“若,則”“若,則”,故C正確.D:由冪函數(shù)在遞減,故D錯.故選:C【點睛】考查判斷命題的真假,是基礎題.11、B【解析】

由于實際問題中扇形弧長較小,可將導線的長視為扇形弧長,利用弧長公式計算即可.【詳解】因為弧長比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導線長度約為63(厘米).故選:B.【點睛】本題主要考查了扇形弧長的計算,屬于容易題.12、A【解析】

由,得到,得出,再結合三角函數(shù)的基本關系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數(shù)的性質,以及三角函數(shù)的基本關系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、32π【解析】

設ED=a,根據(jù)勾股定理的逆定理可以通過計算可以證明出CE⊥ED.AM=x,根據(jù)三棱錐的體積公式,運用基本不等式,可以求出AM的長度,最后根據(jù)球的表面積公式進行求解即可.【詳解】設ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當平面ABD⊥平面BCD時,當四面體C﹣EMN的體積才有可能取得最大值,設AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當且僅當x時取等號.解得a=2.此時三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π【點睛】本題考查了基本不等式的應用,考查了球的表面積公式,考查了數(shù)學運算能力和空間想象能力.14、【解析】

由條件得到函數(shù)的對稱性,從而得到結果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對稱軸.∴f=±2.【點睛】本題考查了正弦型三角函數(shù)的對稱性,注意對稱軸必過最高點或最低點,屬于基礎題.15、【解析】由圖可知,當直線y=kx在直線OA與x軸(不含它們)之間時,y=kx與y=f(x)的圖像有兩個不同交點,即方程有兩個不相同的實根.16、16.【解析】由題意可知拋物線的焦點,準線為設直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設點由跟與系數(shù)的關系得,同理∵根據(jù)拋物線的性質,拋物線上的點到焦點的距離等于到準線的距離∴,同理∴,當且僅當時取等號.故答案為16點睛:(1)與拋物線有關的最值問題,一般情況下都與拋物線的定義有關.利用定義可將拋物線上的點到焦點的距離轉化為到準線的距離,可以使運算化繁為簡.“看到準線想焦點,看到焦點想準線”,這是解決拋物線焦點弦有關問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是定值,詳見解析【解析】

(1)根據(jù)長軸長為,離心率,則有求解.(2)設,則,直線,令得,,則,直線,令,得,則,再根據(jù)求解.【詳解】(1)依題意得,解得,則橢圓的方程.(2)設,則,直線,令得,,則,直線,令,得,則,.【點睛】本題主要考查橢圓的方程及直線與橢圓的位置關系,還考查了平面幾何知識和運算求解的能力,屬于中檔題.18、(1)證明見解析(2)【解析】

(1)連接,設,連接.通過證明,證得直線平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的正弦值.【詳解】(1)連接,設,連接,因為,所以,所以,在中,因為,所以,且平面,故平面.(2)因為,,,,,所以,因為,平面,所以平面,所以,,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標系,由已知可得,,,,所以,因為,所以,所以點的坐標為,所以,,設為平面的法向量,則,令,解得,,所以,即為平面的一個法向量.,同理可求得平面的一個法向量為所以所以二面角的正弦值為【點睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1)e;(2)2.【解析】

(1)根據(jù)反函數(shù)的性質,得出,再利用導數(shù)的幾何意義,求出曲線在點處的切線為,構造函數(shù),利用導數(shù)求出單調性,即可得出的值;(2)設,求導,求出的單調性,從而得出最大值為,結合恒成立的性質,得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關于直線對稱,所以函數(shù)的圖象與互為反函數(shù),則,,設點,,又,當時,,曲線在點處的切線為,即,代入點,得,即,構造函數(shù),當時,,當時,,且,當時,單調遞增,而,故存在唯一的實數(shù)根.(2)由于不等式恒成立,可設,所以,令,得.所以當時,;當時,,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因為,,又因為在是減函數(shù).所以當時,.所以正整數(shù)的最小值為2.【點睛】本題考查導數(shù)的幾何意義和利用導數(shù)解決恒成立問題,涉及到單調性、構造函數(shù)法等,考查函數(shù)思想和計算能力.20、(1)(2)見解析【解析】

(1)直接求出直線方程,與橢圓方程聯(lián)立求出點坐標,從而可得直線方程,得其與軸交點坐標;(2)設,則,求出直線和的方程,從而求得兩直線的交點坐標,證明此交點在橢圓上,即此點坐標適合橢圓方程.代入驗證即可.注意分和說明.【詳解】解:本題考查直線與橢圓的位置關系的綜合,(1)由題知,,則.因為,所以,則直線的方程為,聯(lián)立,可得故.則,直線的方程為.令,得,故直線與軸的交點坐標為.(2)證明:因為,,所以.設點,則.設當時,設,則,此時直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點為,顯然在橢圓上.同理當時,交點也在橢圓上.當時,可設直線的方程為,即.直線的方程為,聯(lián)立方程,消去得,化簡并解得.將代入中,化簡得.所以兩直線的交點為.因為,又因為,所以,則,所以點在橢圓上.綜上所述,直線與直線的交點在橢圓上.【點睛】本題考查直線與橢圓相交問題,解題方法是解析幾何的基本方程,求出直線方程,解方程組求出交點坐標,代入曲線方程驗證點在曲線.本題考查了學生的運算求解能力.21、(1).(2).【解析】

(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論