江西新建二中高三下學(xué)期第六次檢測(cè)新高考數(shù)學(xué)試卷及答案解析_第1頁(yè)
江西新建二中高三下學(xué)期第六次檢測(cè)新高考數(shù)學(xué)試卷及答案解析_第2頁(yè)
江西新建二中高三下學(xué)期第六次檢測(cè)新高考數(shù)學(xué)試卷及答案解析_第3頁(yè)
江西新建二中高三下學(xué)期第六次檢測(cè)新高考數(shù)學(xué)試卷及答案解析_第4頁(yè)
江西新建二中高三下學(xué)期第六次檢測(cè)新高考數(shù)學(xué)試卷及答案解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西新建二中高三下學(xué)期第六次檢測(cè)新高考數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱為世界三大數(shù)學(xué)家.據(jù)說(shuō),他自己覺(jué)得最為滿意的一個(gè)數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個(gè)結(jié)論,要求后人在他的墓碑上刻著一個(gè)圓柱容器里放了一個(gè)球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.2.已知復(fù)數(shù),,則()A. B. C. D.3.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.4.是虛數(shù)單位,則()A.1 B.2 C. D.5.集合的真子集的個(gè)數(shù)為()A.7 B.8 C.31 D.326.已知直線:()與拋物線:交于(坐標(biāo)原點(diǎn)),兩點(diǎn),直線:與拋物線交于,兩點(diǎn).若,則實(shí)數(shù)的值為()A. B. C. D.7.對(duì)于函數(shù),定義滿足的實(shí)數(shù)為的不動(dòng)點(diǎn),設(shè),其中且,若有且僅有一個(gè)不動(dòng)點(diǎn),則的取值范圍是()A.或 B.C.或 D.8.已知角的終邊經(jīng)過(guò)點(diǎn)P(),則sin()=A. B. C. D.9.已知函數(shù)(),若函數(shù)在上有唯一零點(diǎn),則的值為()A.1 B.或0 C.1或0 D.2或010.已知數(shù)列對(duì)任意的有成立,若,則等于()A. B. C. D.11.已知,,,,.若實(shí)數(shù),滿足不等式組,則目標(biāo)函數(shù)()A.有最大值,無(wú)最小值 B.有最大值,有最小值C.無(wú)最大值,有最小值 D.無(wú)最大值,無(wú)最小值12.已知x,y滿足不等式,且目標(biāo)函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]二、填空題:本題共4小題,每小題5分,共20分。13.邊長(zhǎng)為2的菱形中,與交于點(diǎn)O,E是線段的中點(diǎn),的延長(zhǎng)線與相交于點(diǎn)F,若,則______.14.設(shè)平面向量與的夾角為,且,,則的取值范圍為_(kāi)_____.15.設(shè),滿足條件,則的最大值為_(kāi)_________.16.有以下四個(gè)命題:①在中,的充要條件是;②函數(shù)在區(qū)間上存在零點(diǎn)的充要條件是;③對(duì)于函數(shù),若,則必不是奇函數(shù);④函數(shù)與的圖象關(guān)于直線對(duì)稱.其中正確命題的序號(hào)為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù),,其中,為正實(shí)數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實(shí)數(shù)的取值范圍;(2)設(shè),證明:對(duì)任意,都有.18.(12分)對(duì)于非負(fù)整數(shù)集合(非空),若對(duì)任意,或者,或者,則稱為一個(gè)好集合.以下記為的元素個(gè)數(shù).(1)給出所有的元素均小于的好集合.(給出結(jié)論即可)(2)求出所有滿足的好集合.(同時(shí)說(shuō)明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.19.(12分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知,.求C;若,求,的面積20.(12分)己知圓F1:(x+1)1+y1=r1(1≤r≤3),圓F1:(x-1)1+y1=(4-r)1.(1)證明:圓F1與圓F1有公共點(diǎn),并求公共點(diǎn)的軌跡E的方程;(1)已知點(diǎn)Q(m,0)(m<0),過(guò)點(diǎn)E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點(diǎn),記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實(shí)數(shù)m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說(shuō)明理由.21.(12分)已知是公比為的無(wú)窮等比數(shù)列,其前項(xiàng)和為,滿足,________.是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說(shuō)明理由.從①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問(wèn)題中并作答.22.(10分)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點(diǎn)睛】本題主要考查組合體的表面積和體積,還考查了對(duì)數(shù)學(xué)史了解,屬于基礎(chǔ)題.2、B【解析】分析:利用的恒等式,將分子、分母同時(shí)乘以,化簡(jiǎn)整理得詳解:,故選B點(diǎn)睛:復(fù)數(shù)問(wèn)題是高考數(shù)學(xué)中的??紗?wèn)題,屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問(wèn)題.3、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.4、C【解析】

由復(fù)數(shù)除法的運(yùn)算法則求出,再由模長(zhǎng)公式,即可求解.【詳解】由.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.5、A【解析】

計(jì)算,再計(jì)算真子集個(gè)數(shù)得到答案.【詳解】,故真子集個(gè)數(shù)為:.故選:.【點(diǎn)睛】本題考查了集合的真子集個(gè)數(shù),意在考查學(xué)生的計(jì)算能力.6、D【解析】

設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達(dá)定理,再由直線與拋物線的交點(diǎn)求出點(diǎn)坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點(diǎn)睛】本題考查直線與拋物線的綜合應(yīng)用,弦長(zhǎng)公式的應(yīng)用,屬于中檔題.7、C【解析】

根據(jù)不動(dòng)點(diǎn)的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫(huà)出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時(shí),,則在內(nèi)單調(diào)遞增;當(dāng)時(shí),,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個(gè)不動(dòng)點(diǎn),可得得或,解得或.故選:C【點(diǎn)睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.8、A【解析】

由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項(xiàng).9、C【解析】

求出函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時(shí),根據(jù)函數(shù)的單調(diào)性及零點(diǎn)存在性定理可判斷;【詳解】解:∵(),∴,∴當(dāng)時(shí),由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個(gè)零點(diǎn),∴的值是1或0.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問(wèn)題,零點(diǎn)存在性定理的應(yīng)用,屬于中檔題.10、B【解析】

觀察已知條件,對(duì)進(jìn)行化簡(jiǎn),運(yùn)用累加法和裂項(xiàng)法求出結(jié)果.【詳解】已知,則,所以有,,,,兩邊同時(shí)相加得,又因?yàn)?,所?故選:【點(diǎn)睛】本題考查了求數(shù)列某一項(xiàng)的值,運(yùn)用了累加法和裂項(xiàng)法,遇到形如時(shí)就可以采用裂項(xiàng)法進(jìn)行求和,需要掌握數(shù)列中的方法,并能熟練運(yùn)用對(duì)應(yīng)方法求解.11、B【解析】

判斷直線與縱軸交點(diǎn)的位置,畫(huà)出可行解域,即可判斷出目標(biāo)函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標(biāo)函數(shù)一定有最大值和最小值.故選:B【點(diǎn)睛】本題考查了目標(biāo)函數(shù)最值是否存在問(wèn)題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.12、B【解析】

作出可行域,對(duì)t進(jìn)行分類討論分析目標(biāo)函數(shù)的最大值,即可求解.【詳解】畫(huà)出不等式組所表示的可行域如圖△AOB當(dāng)t≤2時(shí),可行域即為如圖中的△OAM,此時(shí)目標(biāo)函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時(shí)可知目標(biāo)函數(shù)Z=9x+6y在的交點(diǎn)()處取得最大值,此時(shí)Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點(diǎn)睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標(biāo)函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標(biāo)函數(shù)的最大值最優(yōu)解的處理辦法.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

取基向量,,然后根據(jù)三點(diǎn)共線以及向量加減法運(yùn)算法則將,表示為基向量后再相乘可得.【詳解】如圖:設(shè),又,且存在實(shí)數(shù)使得,,,,,,故答案為:.【點(diǎn)睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運(yùn)算,屬中檔題.14、【解析】

根據(jù)已知條件計(jì)算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進(jìn)而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計(jì)算能力,屬于中等題.15、【解析】

作出可行域,由得,平移直線,數(shù)形結(jié)合可求的最大值.【詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當(dāng)直線經(jīng)過(guò)可行域內(nèi)的點(diǎn)時(shí),最小,此時(shí)最大.解方程組,得,..故答案為:.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,屬于基礎(chǔ)題.16、①【解析】

由三角形的正弦定理和邊角關(guān)系可判斷①;由零點(diǎn)存在定理和二次函數(shù)的圖象可判斷②;由,結(jié)合奇函數(shù)的定義,可判斷③;由函數(shù)圖象對(duì)稱的特點(diǎn)可判斷④.【詳解】解:①在中,,故①正確;②函數(shù)在區(qū)間上存在零點(diǎn),比如在存在零點(diǎn),但是,故②錯(cuò)誤;③對(duì)于函數(shù),若,滿足,但可能為奇函數(shù),故③錯(cuò)誤;④函數(shù)與的圖象,可令,即,即有和的圖象關(guān)于直線對(duì)稱,即對(duì)稱,故④錯(cuò)誤.故答案為:①.【點(diǎn)睛】本題主要考查函數(shù)的零點(diǎn)存在定理和對(duì)稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】

(1)據(jù)題意可得在區(qū)間上恒成立,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當(dāng)時(shí),,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性從而證明在區(qū)間上成立,從而證明對(duì)任意,都有.【詳解】(1)解:因?yàn)楹瘮?shù)的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設(shè),其中,所以,其中,.①當(dāng),即時(shí),,所以函數(shù)在上單調(diào)遞增,,故成立,滿足題意.②當(dāng),即時(shí),設(shè),則圖象的對(duì)稱軸,,,所以在上存在唯一實(shí)根,設(shè)為,則,,,所以在上單調(diào)遞減,此時(shí),不合題意.綜上可得,實(shí)數(shù)的取值范圍是.(2)證明:由題意得,因?yàn)楫?dāng)時(shí),,,所以.令,則,所以在上單調(diào)遞增,,即,所以,從而.由(1)知當(dāng)時(shí),在上恒成立,整理得.令,則要證,只需證.因?yàn)椋栽谏蠁握{(diào)遞增,所以,即在上恒成立.綜上可得,對(duì)任意,都有成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的作用,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性與求函數(shù)最值,利用導(dǎo)數(shù)證明不等式,屬于難題.18、(1),,,.(2);證明見(jiàn)解析.(3)證明見(jiàn)解析.【解析】

(1)根據(jù)好集合的定義列舉即可得到結(jié)果;(2)設(shè),其中,由知;由可知或,分別討論兩種情況可的結(jié)果;(3)記,則,設(shè),由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【詳解】(1),,,.(2)設(shè),其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時(shí),,不滿足題意;若,此時(shí),滿足題意,,其中為相異正整數(shù).(3)記,則,首先,,設(shè),其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對(duì)于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類推:,,此時(shí),故中存在元素,使得中所有元素均為的整數(shù)倍.【點(diǎn)睛】本題考查集合中的新定義問(wèn)題的求解,關(guān)鍵是明確已知中所給的新定義的具體要求,根據(jù)集合元素的要求進(jìn)行推理說(shuō)明,對(duì)于學(xué)生分析和解決問(wèn)題能力、邏輯推理能力有較高的要求,屬于較難題.19、(1).(2).【解析】

由已知利用正弦定理,同角三角函數(shù)基本關(guān)系式可求,結(jié)合范圍,可求,由已知利用二倍角的余弦函數(shù)公式可得,結(jié)合范圍,可求A,根據(jù)三角形的內(nèi)角和定理即可解得C的值.由及正弦定理可得b的值,根據(jù)兩角和的正弦函數(shù)公式可求sinC的值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【點(diǎn)睛】本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,二倍角的余弦函數(shù)公式,三角形的內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式等知識(shí)在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.20、(1)見(jiàn)解析,(1)存在,【解析】

(1)求出圓和圓的圓心和半徑,通過(guò)圓F1與圓F1有公共點(diǎn)求出的范圍,從而根據(jù)可得點(diǎn)的軌跡,進(jìn)而求出方程;(1)過(guò)點(diǎn)且斜率為的直線方程為,設(shè),,聯(lián)立直線方程和橢圓方程,根據(jù)韋達(dá)定理以及,,可得,根據(jù)其為定值,則有,進(jìn)而可得結(jié)果.【詳解】(1)因?yàn)?,,所以,因?yàn)閳A的半徑為,圓的半徑為,又因?yàn)?,所以,即,所以圓與圓有公共點(diǎn),設(shè)公共點(diǎn)為,因此,所以點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論