2025屆福建省泉港一中高一下數(shù)學(xué)期末調(diào)研試題含解析_第1頁(yè)
2025屆福建省泉港一中高一下數(shù)學(xué)期末調(diào)研試題含解析_第2頁(yè)
2025屆福建省泉港一中高一下數(shù)學(xué)期末調(diào)研試題含解析_第3頁(yè)
2025屆福建省泉港一中高一下數(shù)學(xué)期末調(diào)研試題含解析_第4頁(yè)
2025屆福建省泉港一中高一下數(shù)學(xué)期末調(diào)研試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆福建省泉港一中高一下數(shù)學(xué)期末調(diào)研試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.一個(gè)正方體內(nèi)接于一個(gè)球,過(guò)球心作一個(gè)截面,如圖所示,則截面的可能圖形是()A.①③④ B.②④ C.②③④ D.①②③2.在中,,是的內(nèi)心,若,其中,動(dòng)點(diǎn)的軌跡所覆蓋的面積為(

)A. B. C. D.3.如圖,在下列四個(gè)正方體中,,,,,,,為所在棱的中點(diǎn),則在這四個(gè)正方體中,陰影平面與所在平面平行的是()A. B.C. D.4.下列函數(shù)中,在區(qū)間上為增函數(shù)的是A. B.C. D.5.圓關(guān)于原點(diǎn)對(duì)稱(chēng)的圓的方程為()A. B.C. D.6.已知內(nèi)角的對(duì)邊分別為,滿足且,則△ABC()A.一定是等腰非等邊三角形 B.一定是等邊三角形C.一定是直角三角形 D.可能是銳角三角形,也可能是鈍角三角形7.直線的傾斜角的大小為()A. B. C. D.8.已知函數(shù)f(x)=2x+log2x,且實(shí)數(shù)a>b>c>0,滿足A.x0<a B.x0>a9.在等腰梯形ABCD中,,點(diǎn)E是線段BC的中點(diǎn),若,則A. B. C. D.10.等差數(shù)列的前項(xiàng)和為,若,則()A.27 B.36 C.45 D.54二、填空題:本大題共6小題,每小題5分,共30分。11.已知三棱錐P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,則三棱錐P-ABC外接球的體積為_(kāi)_.12.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個(gè)鐵球后,水恰好把鐵球淹沒(méi),則該鐵球的體積為_(kāi)_______13.若,則__________.(結(jié)果用反三角函數(shù)表示)14.已知,,若與的夾角為鈍角,則實(shí)數(shù)的取值范圍為_(kāi)_____.15.如圖,在中,,是邊上一點(diǎn),,則.16.已知等比數(shù)列中,,,則該等比數(shù)列的公比的值是______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù)的部分圖象如圖所示.(1)求函數(shù)的解析式,并求出的單調(diào)遞增區(qū)間;(2)若,求的值18.已知四棱錐的底面ABCD是菱形,平面ABCD,,,F(xiàn),G分別為PD,BC中點(diǎn),.(Ⅰ)求證:平面PAB;(Ⅱ)求三棱錐的體積;(Ⅲ)求證:OP與AB不垂直.19.已知的三個(gè)內(nèi)角、、的對(duì)邊分別是、、,的面積,(Ⅰ)求角;(Ⅱ)若中,邊上的高,求的值.20.在中,、、分別是內(nèi)角、、的對(duì)邊,且.(1)求角的大?。唬?)若,的面積為,求的周長(zhǎng).21.設(shè)數(shù)列滿足(,),且,.(1)求和的值;(2)求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

分別當(dāng)截面平行于正方體的一個(gè)面時(shí),當(dāng)截面過(guò)正方體的兩條相交的體對(duì)角線時(shí),當(dāng)截面既不過(guò)體對(duì)角線也不平行于任一側(cè)面時(shí),進(jìn)行判定,即可求解.【詳解】由題意,當(dāng)截面平行于正方體的一個(gè)面時(shí)得③;當(dāng)截面過(guò)正方體的兩條相交的體對(duì)角線時(shí)得④;當(dāng)截面既不過(guò)正方體體對(duì)角線也不平行于任一側(cè)面時(shí)可能得①;無(wú)論如何都不能得②.故選A.【點(diǎn)睛】本題主要考查了正方體與球的組合體的截面問(wèn)題,其中解答中熟記空間幾何體的結(jié)構(gòu)特征是解答此類(lèi)問(wèn)題的關(guān)鍵,著重考查了空間想象能力,以及推理能力,屬于基礎(chǔ)題.2、A【解析】

畫(huà)出圖形,由已知條件便知P點(diǎn)在以BD,BP為鄰邊的平行四邊形內(nèi),從而所求面積為2倍的△AOB的面積,從而需求S△AOB:由余弦定理可以求出AB的長(zhǎng)為5,根據(jù)O為△ABC的內(nèi)心,從而O到△ABC三邊的距離相等,從而,由面積公式可以求出△ABC的面積,從而求出△AOB的面積,這樣2S△AOB便是所求的面積.【詳解】如圖,根據(jù)題意知,P點(diǎn)在以BP,BD為鄰邊的平行四邊形內(nèi)部,∴動(dòng)點(diǎn)P的軌跡所覆蓋圖形的面積為2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O為△ABC的內(nèi)心;所以內(nèi)切圓半徑r=,所以∴==;∴動(dòng)點(diǎn)P的軌跡所覆蓋圖形的面積為.故答案為:A.【點(diǎn)睛】本題主要考查考查向量加法的平行四邊形法則,向量數(shù)乘的幾何意義,余弦定理,以及三角形內(nèi)心的定義,三角形的面積公式.意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)本題的解題關(guān)鍵是找到P點(diǎn)所覆蓋的區(qū)域.3、A【解析】

根據(jù)線面平行判定定理以及作截面逐個(gè)分析判斷選擇.【詳解】A中,因?yàn)?所以可得平面,又,可得平面,從而平面平面B中,作截面可得平面平面(H為C1D1中點(diǎn)),如圖:C中,作截面可得平面平面(H為C1D1中點(diǎn)),如圖:D中,作截面可得為兩相交直線,因此平面與平面不平行,如圖:【點(diǎn)睛】本題考查線面平行判定定理以及截面,考查空間想象能力與基本判斷論證能力,屬中檔題.4、A【解析】試題分析:對(duì)A,函數(shù)在上為增函數(shù),符合要求;對(duì)B,在上為減函數(shù),不符合題意;對(duì)C,為上的減函數(shù),不符合題意;對(duì)D,在上為減函數(shù),不符合題意.故選A.考點(diǎn):函數(shù)的單調(diào)性,容易題.5、D【解析】

根據(jù)已知圓的方程可得其圓心,進(jìn)而可求得其關(guān)于原點(diǎn)對(duì)稱(chēng)點(diǎn),利用圓的標(biāo)準(zhǔn)方程即可求解.【詳解】由圓,則圓心為,半徑,圓心為關(guān)于原點(diǎn)對(duì)稱(chēng)點(diǎn)為,所以圓關(guān)于原點(diǎn)對(duì)稱(chēng)的圓的方程為.故選:D【點(diǎn)睛】本題考查了根據(jù)圓心與半徑求圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.6、B【解析】

根據(jù)正弦定理可得和,然后對(duì)進(jìn)行分類(lèi)討論,結(jié)合三角形的性質(zhì),即可得到結(jié)果.【詳解】在中,因?yàn)?,所以,又,所以,又?dāng)時(shí),因?yàn)椋詴r(shí)等邊三角形;當(dāng)時(shí),因?yàn)?,所以不存在,綜上:一定是等邊三角形.故選:B.【點(diǎn)睛】本題主要考查了正弦定理的應(yīng)用,解題過(guò)程中注意兩解得情況,一般需要檢驗(yàn),本題屬于基礎(chǔ)題.7、B【解析】

由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選.8、D【解析】

由函數(shù)的單調(diào)性可得:當(dāng)x0<c時(shí),函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)【詳解】因?yàn)楹瘮?shù)f(x)=2則函數(shù)y=f(x)在(0,+∞)為增函數(shù),又實(shí)數(shù)a>b>c>0,滿足f(a)f(b)f(c)<0,則f(a),f(b),f(c)為負(fù)數(shù)的個(gè)數(shù)為奇數(shù),對(duì)于選項(xiàng)A,B,C選項(xiàng)可能成立,對(duì)于選項(xiàng)D,當(dāng)x0函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)<0,故選項(xiàng)D不可能成立,故選:D.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,屬于中檔題.9、B【解析】

利用平面向量的幾何運(yùn)算,將用和表示,根據(jù)平面向量基本定理得,的值,即可求解.【詳解】取AB的中點(diǎn)F,連CF,則四邊形AFCD是平行四邊形,所以,且因?yàn)?,,,∴故選B.【點(diǎn)睛】本題主要考查了平面向量的基本定理的應(yīng)用,其中解答中根據(jù)平面向量的基本定理,將用和進(jìn)行表示,求得的值是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、B【解析】

利用等差數(shù)列的性質(zhì)進(jìn)行化簡(jiǎn),由此求得的值.【詳解】依題意,所以,故選B.【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),考查等差數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】

如圖所示,取PB的中點(diǎn)O,∵PA⊥平面ABC,∴PA⊥AB,PA⊥BC,又BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥PC.∴OA=12PB,OC=12PB,∴OA=OB=OC=OP,故O為外接球的球心.又PA=2,AC=BC=1,∴AB=2,PB=6,∴外接球的半徑R=∴V球=43πR3=4π3×(62)3=6點(diǎn)睛:空間幾何體與球接、切問(wèn)題的求解方法:(1)求解球與棱柱、棱錐的接、切問(wèn)題時(shí),一般過(guò)球心及接、切點(diǎn)作截面,把空間問(wèn)題轉(zhuǎn)化為平面圖形與圓的接、切問(wèn)題,再利用平面幾何知識(shí)尋找?guī)缀沃性亻g的關(guān)系求解.(2)若球面上四點(diǎn)P,A,B,C構(gòu)成的三條線段PA,PB,PC兩兩互相垂直,且PA=a,PB=b,PC=c,一般把有關(guān)元素“補(bǔ)形”成為一個(gè)球內(nèi)接長(zhǎng)方體,利用4R2=a2+b2+c2求解.12、【解析】

通過(guò)將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點(diǎn)M,故,則,所以,,所以放球后,而,而,解得.【點(diǎn)睛】本題主要考查圓錐體積與球體積的相關(guān)計(jì)算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力,計(jì)算能力和分析能力.13、;【解析】

由條件利用反三角函數(shù)的定義和性質(zhì)即可求解.【詳解】,則,故答案為:【點(diǎn)睛】本題考查了反三角函數(shù)的定義和性質(zhì),屬于基礎(chǔ)題.14、【解析】

由題意得出且與不共線,利用向量的坐標(biāo)運(yùn)算可求出實(shí)數(shù)的取值范圍.【詳解】由于與的夾角為鈍角,則且與不共線,,,,解得且,因此,實(shí)數(shù)的取值范圍是,故答案為:.【點(diǎn)睛】本題考查利用向量的夾角求參數(shù),解題時(shí)要找到其轉(zhuǎn)化條件,設(shè)兩個(gè)非零向量與的夾角為,為銳角,為鈍角.15、【解析】

由圖及題意得

,

=

=(

)(

)=

+

=

=

.16、【解析】

根據(jù)等比通項(xiàng)公式即可求解【詳解】故答案為:【點(diǎn)睛】本題考查等比數(shù)列公比的求解,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);遞增區(qū)間為;(2)【解析】

(1)由圖可知其函數(shù)的周期滿足,從而求得,進(jìn)而求得,再代入點(diǎn)的坐標(biāo)可得值,從而求得解析式;解不等式,可得函數(shù)的單調(diào)增區(qū)間;(2)由題意可得,結(jié)合,得到,利用平方關(guān)系,求得,之后利用差角余弦公式求得結(jié)果.【詳解】(1)設(shè)函數(shù)的周期為,由圖可知,∴,即,∵,∴,∴,上式中代入,有,得,,即,,又∵,∴,∴,令,解得,即的遞增區(qū)間為;(2),又,∴,∴;∴.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有根據(jù)圖象確定函數(shù)解析式,求正弦型函數(shù)的單調(diào)區(qū)間,同角三角函數(shù)關(guān)系式,利用整體角思維,結(jié)合差角正弦公式求三角函數(shù)值,屬于簡(jiǎn)單題目.18、(Ⅰ)見(jiàn)解析(Ⅱ)(Ⅲ)見(jiàn)解析【解析】

(Ⅰ)連接,,由已知結(jié)合三角形中位線定理可得平面,再由面面平行的判斷可得平面平面,進(jìn)而可得平面;(Ⅱ)首先證明平面,而為的中點(diǎn),然后利用等積法求三棱錐的體積;(Ⅲ)直接利用反證法證明與不垂直.【詳解】(Ⅰ)如圖,連接,∵是中點(diǎn),是中點(diǎn),∴,而平面,平面,∴平面,又∵是中點(diǎn),是中點(diǎn),∴,而平面,平面,∴平面,又∴平面平面,即平面.(Ⅱ)∵底面,∴,又四邊形為菱形,∴,又,∴平面,而為的中點(diǎn),∴.(Ⅲ)假設(shè),又,且,∴平面,則,與矛盾,∴假設(shè)錯(cuò)誤,故與不垂直.【點(diǎn)睛】本題考查直線與平面平行的判定,考查空間想象能力與思維能力,訓(xùn)練了利用反證法證明線線垂直問(wèn)題,訓(xùn)練了利用等積法求解多面體的體積,屬于中檔題.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由面積公式推出,代入所給等式可得,求出角C的余弦值從而求得角C;(Ⅱ)首先由求出邊c,再由面積公式代入相應(yīng)值求出邊b,利用余弦定理即可求出邊a.【詳解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,將代入中得,解得.【點(diǎn)睛】本題考查余弦定理解三角形,三角形面積公式,屬于基礎(chǔ)題.20、(1)(2)【解析】

(1)由正弦定理,兩角和的正弦函數(shù)公式化簡(jiǎn)已知等式可得,由,可求,結(jié)合范圍,可求.(2)利用三角形的面積公式可求,進(jìn)而根據(jù)余弦定理可得,即可計(jì)算得解的周長(zhǎng)的值.【詳解】解:(1)∵,∴由正弦定理可得:,即,∵,∴,∵,∴.(2)∵,,的面積為,,∴,∴由余弦定理可

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論