2022年貴州省貴陽市高三數(shù)學第一學期期末質(zhì)量檢測試題含解析_第1頁
2022年貴州省貴陽市高三數(shù)學第一學期期末質(zhì)量檢測試題含解析_第2頁
2022年貴州省貴陽市高三數(shù)學第一學期期末質(zhì)量檢測試題含解析_第3頁
2022年貴州省貴陽市高三數(shù)學第一學期期末質(zhì)量檢測試題含解析_第4頁
2022年貴州省貴陽市高三數(shù)學第一學期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變B.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變C.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變D.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變2.已知函數(shù),若,,,則a,b,c的大小關系是()A. B. C. D.3.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種4.已知三棱柱的所有棱長均相等,側棱平面,過作平面與平行,設平面與平面的交線為,記直線與直線所成銳角分別為,則這三個角的大小關系為()A. B.C. D.5.已知焦點為的拋物線的準線與軸交于點,點在拋物線上,則當取得最大值時,直線的方程為()A.或 B.或 C.或 D.6.已知函數(shù),則()A. B.1 C.-1 D.07.設過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關于軸對稱,為坐標原點,若,且,則點的軌跡方程是()A. B.C. D.8.已知冪函數(shù)的圖象過點,且,,,則,,的大小關系為()A. B. C. D.9.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結論正確的是()A. B. C. D.10.已知集合,則()A. B. C. D.11.世紀產(chǎn)生了著名的“”猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到.如圖是驗證“”猜想的一個程序框圖,若輸入正整數(shù)的值為,則輸出的的值是()A. B. C. D.12.若集合,則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,則_________.14.已知向量,,則______.15.若將函數(shù)的圖象沿軸向右平移個單位后所得的圖象與的圖象關于軸對稱,則的最小值為________________.16.已知復數(shù)對應的點位于第二象限,則實數(shù)的范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).⑴當時,求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.18.(12分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.19.(12分)已知函數(shù).(1)當時,解不等式;(2)設不等式的解集為,若,求實數(shù)的取值范圍.20.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.21.(12分)已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,(1)求橢圓的方程;(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.22.(10分)近幾年一種新奇水果深受廣大消費者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關系如下:x13412y51.522.58y與x可用回歸方程(其中,為常數(shù))進行模擬.(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150元/箱,試預測該新奇水果100箱的利潤是多少元.|.(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)11天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.(i)若從箱數(shù)在內(nèi)的天數(shù)中隨機抽取2天,估計恰有1天的水果箱數(shù)在內(nèi)的概率;(ⅱ)求這11天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點值作代表)參考數(shù)據(jù)與公式:設,則0.541.81.530.45線性回歸直線中,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由函數(shù)的最大值求出,根據(jù)周期求出,由五點畫法中的點坐標求出,進而求出的解析式,與對比結合坐標變換關系,即可求出結論.【詳解】由圖可知,,又,,又,,,為了得到這個函數(shù)的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標變?yōu)樵瓉淼模v坐標不變)即可.故選:A【點睛】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關系,屬于中檔題.2、D【解析】

根據(jù)題意,求出函數(shù)的導數(shù),由函數(shù)的導數(shù)與函數(shù)單調(diào)性的關系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點睛】本題考查函數(shù)的導數(shù)與函數(shù)單調(diào)性的關系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎題.3、B【解析】

根據(jù)條件2名內(nèi)科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據(jù)排列組合進行計算即可.【詳解】2名內(nèi)科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于??碱}型.4、B【解析】

利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設為的中點,為的中點,由圖可知過且與平行的平面為平面,所以直線即為直線,由題易知,的補角,分別為,設三棱柱的棱長為2,在中,,;在中,,;在中,,,.故選:B【點睛】本題主要考查了空間中兩直線所成角的計算,考查了學生的作圖,用圖能力,體現(xiàn)了學生直觀想象的核心素養(yǎng).5、A【解析】

過作與準線垂直,垂足為,利用拋物線的定義可得,要使最大,則應最大,此時與拋物線相切,再用判別式或?qū)?shù)計算即可.【詳解】過作與準線垂直,垂足為,,則當取得最大值時,最大,此時與拋物線相切,易知此時直線的斜率存在,設切線方程為,則.則,則直線的方程為.故選:A.【點睛】本題考查直線與拋物線的位置關系,涉及到拋物線的定義,考查學生轉(zhuǎn)化與化歸的思想,是一道中檔題.6、A【解析】

由函數(shù),求得,進而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、A【解析】

設坐標,根據(jù)向量坐標運算表示出,從而可利用表示出;由坐標運算表示出,代入整理可得所求的軌跡方程.【詳解】設,,其中,,即關于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標運算、數(shù)量積運算;關鍵是利用動點坐標表示出變量,根據(jù)平面向量數(shù)量積的坐標運算可整理得軌跡方程.8、A【解析】

根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎題.9、A【解析】

根據(jù)題意,畫出幾何位置圖形,由圖形的位置關系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.10、B【解析】

計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.11、C【解析】

列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.12、C【解析】

求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先由題意得:,再利用向量數(shù)量積的幾何意義得,可得結果.【詳解】由知:,則在方向的投影為,由向量數(shù)量積的幾何意義得:,∴故答案為【點睛】本題考查了投影的應用,考查了數(shù)量積的幾何意義及向量的模的運算,屬于基礎題.14、【解析】

求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎.本題關鍵是用數(shù)量積的定義把模的運算轉(zhuǎn)化為數(shù)量積的運算.15、【解析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖像的對稱性,求得的最小值.【詳解】解:將函數(shù)的圖象沿軸向右平移個單位長度,可得的圖象.根據(jù)圖象與的圖象關于軸對稱,可得,,,即時,的最小值為.故答案為:.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)圖像的對稱性,屬于基礎題.16、【解析】

由復數(shù)對應的點,在第二象限,得,且,從而求出實數(shù)的范圍.【詳解】解:∵復數(shù)對應的點位于第二象限,∴,且,∴,故答案為:.【點睛】本題主要考查復數(shù)與復平面內(nèi)對應點之間的關系,解不等式,且是解題的關鍵,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)當時,函數(shù)取得極小值為,無極大值;(2)【解析】試題分析:(1),通過求導分析,得函數(shù)取得極小值為,無極大值;(2),所以,通過求導討論,得到的取值范圍是.試題解析:(1)函數(shù)的定義域為當時,,所以所以當時,,當時,,所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以當時,函數(shù)取得極小值為,無極大值;(2)設函數(shù)上點與函數(shù)上點處切線相同,則所以所以,代入得:設,則不妨設則當時,,當時,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,代入可得:設,則對恒成立,所以在區(qū)間上單調(diào)遞增,又所以當時,即當時,又當時因此當時,函數(shù)必有零點;即當時,必存在使得成立;即存在使得函數(shù)上點與函數(shù)上點處切線相同.又由得:所以單調(diào)遞減,因此所以實數(shù)的取值范圍是.18、(1)(2)【解析】

(1)為假,則為真,求導,利用導函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,,單調(diào)遞增,當,,單調(diào)遞減,作出函數(shù)圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數(shù)滿足,則;若假真,則實數(shù)滿足,無解;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查根據(jù)全(特)稱命題的真假求參數(shù)的問題.其思路:與全稱命題或特稱命題真假有關的參數(shù)取值范圍問題的本質(zhì)是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉(zhuǎn)化思想將條件合理轉(zhuǎn)化,得到關于參數(shù)的方程或不等式(組),再通過解方程或不等式(組)求出參數(shù)的值或范圍.19、(1)或;(2)【解析】

(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結果.(2)利用等價轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關系,可得結果.【詳解】(1)當時,原不等式可化為.①當時,則,所以;②當時,則,所以;⑧當時,則,所以.綜上所述:當時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數(shù)的取值范圍是.【點睛】本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法,以及知識的交叉應用,同時掌握等價轉(zhuǎn)化的思想,屬中檔題.20、(1)見詳解;(2).【解析】

(1)因為折紙和粘合不改變矩形,和菱形內(nèi)部的夾角,所以,依然成立,又因和粘在一起,所以得證.因為是平面垂線,所以易證.(2)在圖中找到對應的平面角,再求此平面角即可.于是考慮關于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,,又因為和粘在一起.,A,C,G,D四點共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過B作延長線于H,連結AH,因為AB平面BCGE,所以而又,故平面,所以.又因為所以是二面角的平面角,而在中,又因為故,所以.而在中,,即二面角的度數(shù)為.【點睛】很新穎的立體幾何考題.首先是多面體粘合問題,考查考生在粘合過程中哪些量是不變的.再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法.最后將求二面角轉(zhuǎn)化為求二面角的平面角問題考查考生的空間想象能力.21、(1)(2)【解析】

(1)由直線可得橢圓右焦點的坐標為,由中點可得,且由斜率公式可得,由點在橢圓上,則,二者作差,進而代入整理可得,即可求解;(2)設直線,點到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長公式求得,利用點到直線距離求得,根據(jù)直線l與線段AB(不含端點)相交,可得,即,進而整理換元,由二次函數(shù)性質(zhì)求解最值即可.【詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論