




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,是的中點(diǎn),,點(diǎn)在上且滿足,則等于()A. B. C. D.2.盒子中有編號(hào)為1,2,3,4,5,6,7的7個(gè)相同的球,從中任取3個(gè)編號(hào)不同的球,則取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的概率是()A. B. C. D.3.設(shè)曲線在點(diǎn)處的切線方程為,則()A.1 B.2 C.3 D.44.已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為()A. B. C. D.5.某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.6.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-27.設(shè)遞增的等比數(shù)列的前n項(xiàng)和為,已知,,則()A.9 B.27 C.81 D.8.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計(jì)),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個(gè) B.個(gè) C.個(gè) D.個(gè)9.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}10.一個(gè)組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長(zhǎng)為1),則該幾何體的體積是()A. B. C. D.11.拋物線的焦點(diǎn)為,則經(jīng)過點(diǎn)與點(diǎn)且與拋物線的準(zhǔn)線相切的圓的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.0個(gè) D.無數(shù)個(gè)12.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現(xiàn)有一善織布的女子,從第2天開始,每天比前一天多織相同數(shù)量的布,第一天織了5尺布,現(xiàn)在一個(gè)月(按30天計(jì)算)共織布390尺.”則每天增加的數(shù)量為____尺,設(shè)該女子一個(gè)月中第n天所織布的尺數(shù)為,則______.14.《九章算術(shù)》卷5《商功》記載一個(gè)問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術(shù)曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長(zhǎng)的平方高),則由此可推得圓周率的取值為________.15.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機(jī)取出的種子,則取出了帶麥銹病種子的概率是_____.16.兩光滑的曲線相切,那么它們?cè)诠颤c(diǎn)處的切線方向相同.如圖所示,一列圓(an>0,rn>0,n=1,2…)逐個(gè)外切,且均與曲線y=x2相切,若r1=1,則a1=___,rn=______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.18.(12分)在直角坐標(biāo)系中,已知直線的直角坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線和直線的極坐標(biāo)方程;(2)已知直線與曲線、相交于異于極點(diǎn)的點(diǎn),若的極徑分別為,求的值.19.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個(gè)條件中選一個(gè),補(bǔ)充到上面問題中,并完成解答.)20.(12分)已知中,角,,的對(duì)邊分別為,,,已知向量,且.(1)求角的大??;(2)若的面積為,,求.21.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:AQI空氣質(zhì)量?jī)?yōu)良輕度污染中度污染重度污染重度污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對(duì)應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為X元,求X的分布列;(ii)試問該企業(yè)7月、8月、9月這三個(gè)月因空氣質(zhì)量造成的經(jīng)濟(jì)損失總額的數(shù)學(xué)期望是否會(huì)超過2.88萬元?說明你的理由.22.(10分)已知函數(shù),.(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當(dāng)時(shí),的最大值為,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點(diǎn).②性質(zhì):或取得最小值③坐標(biāo)法:P點(diǎn)坐標(biāo)是三個(gè)頂點(diǎn)坐標(biāo)的平均數(shù).2、B【解析】
由題意,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的概率為:故選:B【點(diǎn)睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3、D【解析】
利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因?yàn)椋以邳c(diǎn)處的切線的斜率為3,所以,即.故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查運(yùn)算求解能力,是基礎(chǔ)題4、D【解析】
由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.5、C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.6、B【解析】
由函數(shù)解析式中含絕對(duì)值,所以去絕對(duì)值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時(shí),有最大值,當(dāng)時(shí),有最小值.故選:B.【點(diǎn)睛】本題考查了絕對(duì)值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.7、A【解析】
根據(jù)兩個(gè)已知條件求出數(shù)列的公比和首項(xiàng),即得的值.【詳解】設(shè)等比數(shù)列的公比為q.由,得,解得或.因?yàn)?且數(shù)列遞增,所以.又,解得,故.故選:A【點(diǎn)睛】本題主要考查等比數(shù)列的通項(xiàng)和求和公式,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.8、C【解析】
計(jì)算球心連線形成的正四面體相對(duì)棱的距離為cm,得到最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,得到不等式,計(jì)算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個(gè)球兩兩相切,這樣,相鄰的四個(gè)球的球心連線構(gòu)成棱長(zhǎng)為cm的正面體,易求正四面體相對(duì)棱的距離為cm,每裝兩個(gè)球稱為“一層”,這樣裝層球,則最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個(gè)球.故選:【點(diǎn)睛】本題考查了圓柱和球的綜合問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.9、B【解析】
按補(bǔ)集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.10、C【解析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個(gè)三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個(gè)底面半徑為1的圓、高為2的圓柱中挖去一個(gè)底面腰長(zhǎng)為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點(diǎn)睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關(guān)鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.11、B【解析】
圓心在的中垂線上,經(jīng)過點(diǎn),且與相切的圓的圓心到準(zhǔn)線的距離與到焦點(diǎn)的距離相等,圓心在拋物線上,直線與拋物線交于2個(gè)點(diǎn),得到2個(gè)圓.【詳解】因?yàn)辄c(diǎn)在拋物線上,又焦點(diǎn),,由拋物線的定義知,過點(diǎn)、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點(diǎn),這樣的交點(diǎn)共有2個(gè),故過點(diǎn)、且與相切的圓的不同情況種數(shù)是2種.故選:.【點(diǎn)睛】本題主要考查拋物線的簡(jiǎn)單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.12、A【解析】
畫出“,,,所表示的平面區(qū)域,即可進(jìn)行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點(diǎn)睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、52【解析】
設(shè)從第2天開始,每天比前一天多織尺布,由等差數(shù)列前項(xiàng)和公式求出,由此利用等差數(shù)列通項(xiàng)公式能求出.【詳解】設(shè)從第2天開始,每天比前一天多織d尺布,
則,
解得,即每天增加的數(shù)量為,
,故答案為,52.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式、等差數(shù)列的求和公式,意在考查利用所學(xué)知識(shí)解決問題的能力,屬于中檔題.14、3【解析】
根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長(zhǎng)的平方高),可得,進(jìn)而可求出的值【詳解】解:設(shè)圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點(diǎn)睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結(jié)合方程的思想即可求出結(jié)果.15、【解析】
求解占圓柱形容器的的總?cè)莘e的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點(diǎn)睛】本題主要考查了體積類的幾何概型問題,屬于基礎(chǔ)題.16、【解析】
第一空:將圓與聯(lián)立,利用計(jì)算即可;第二空:找到兩外切的圓的圓心與半徑的關(guān)系,再將與聯(lián)立,得到,與結(jié)合可得為等差數(shù)列,進(jìn)而可得.【詳解】當(dāng)r1=1時(shí),圓,與聯(lián)立消去得,則,解得;由圖可知當(dāng)時(shí),①,將與聯(lián)立消去得,則,整理得,代入①得,整理得,則.故答案為:;.【點(diǎn)睛】本題是拋物線與圓的關(guān)系背景下的數(shù)列題,關(guān)鍵是找到圓心和半徑的關(guān)系,建立遞推式,由遞推式求通項(xiàng)公式,綜合性較強(qiáng),是一道難度較大的題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)B(2)【解析】
(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進(jìn)行化簡(jiǎn)可求cosB,進(jìn)而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【詳解】(1)因?yàn)閎(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因?yàn)?,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因?yàn)閍2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當(dāng)且僅當(dāng)a=c時(shí)取等號(hào),即ac的最大值4,所以△ABC面積S即面積的最大值.【點(diǎn)睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應(yīng)用,屬于中檔題.18、(1),.(2)【解析】
(1)先將曲線的參數(shù)方程化為直角坐標(biāo)方程,即可代入公式化為極坐標(biāo);根據(jù)直線的直角坐標(biāo)方程,求得傾斜角,即可得極坐標(biāo)方程.(2)將直線的極坐標(biāo)方程代入曲線、可得,進(jìn)而代入可得的值.【詳解】(1)曲線的參數(shù)方程為(為參數(shù)),消去得,把,代入得,從而得的極坐標(biāo)方程為,∵直線的直角坐標(biāo)方程為,其傾斜角為,∴直線的極坐標(biāo)方程為.(2)將代入曲線的極坐標(biāo)方程分別得到,則.【點(diǎn)睛】本題考查了參數(shù)方程化為普通方程的方法,直角坐標(biāo)方程化為極坐標(biāo)方程的方法,極坐標(biāo)的幾何意義,屬于中檔題.19、見解析【解析】
選擇①時(shí):,,計(jì)算,根據(jù)正弦定理得到,計(jì)算面積得到答案;選擇②時(shí),,,故,為鈍角,故無解;選擇③時(shí),,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計(jì)算面積得到答案.【詳解】選擇①時(shí):,,故.根據(jù)正弦定理:,故,故.選擇②時(shí),,,故,為鈍角,故無解.選擇③時(shí),,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.【點(diǎn)睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1);(2).【解析】試題分析:(1)利用已知及平面向量數(shù)量積運(yùn)算可得,利用正弦定理可得,結(jié)合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.21、(1);(2)(i)詳見解析;(ii)會(huì)超過;詳見解析【解析】
(1)利用組合進(jìn)行計(jì)算以及概率表示,可得結(jié)果.(2)(i)寫出X所有可能取值,并計(jì)算相對(duì)應(yīng)的概率,列出表格可得結(jié)果.(ii)由(i)的條件結(jié)合7月與8月空氣質(zhì)量所對(duì)應(yīng)的概率,可得7月與8月經(jīng)濟(jì)損失的期望和,最后7月、8月、9月經(jīng)濟(jì)損失總額的數(shù)學(xué)期望與2.88萬元比較,可得結(jié)果.【詳解】(1)設(shè)ξ為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則P(ξ=2),P(ξ=3),則這3天中空氣質(zhì)量至少有2天為優(yōu)的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業(yè)9月的經(jīng)濟(jì)損失的數(shù)學(xué)期望為30E(X),即30E(X)=9060元,設(shè)7月、8月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為Y元,可得:,,,E(Y)=02201480320(元),所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《環(huán)保小衛(wèi)士》教案
- 《父親的病》讀書筆記感想與感悟
- 印刷機(jī)搬遷合同范本
- 東北生豬銷售合同范本
- 出租鋪面合同范本范本
- 《拍皮球》教案模板
- 《少年閏土》評(píng)課稿
- 《聲聲慢》教案模板
- 中介無償服務(wù)合同范例
- 辦校合同范本
- 上海市中小學(xué)生學(xué)業(yè)質(zhì)量綠色指標(biāo)問卷調(diào)查-小學(xué)生問卷-I
- 高校電子課件:現(xiàn)代管理學(xué)基礎(chǔ)(第三版)
- 小企業(yè)會(huì)計(jì)實(shí)務(wù)全書ppt完整版課件整本書電子教案最全教學(xué)教程
- (完整word版)服務(wù)質(zhì)量評(píng)價(jià)表
- 腸瘺治療PPT醫(yī)學(xué)課件(PPT 25頁)
- 員工轉(zhuǎn)正評(píng)價(jià)表
- 道路交通事故責(zé)任認(rèn)定行政復(fù)議申請(qǐng)書范例
- 鄭州大學(xué)圖書館平立剖面效果圖
- 高效液相含量測(cè)定計(jì)算公式
- 公安機(jī)關(guān)通用告知書模板
- 《小學(xué)數(shù)學(xué)課程與教學(xué)》教學(xué)大綱
評(píng)論
0/150
提交評(píng)論