2023-2024學(xué)年北京市豐臺區(qū)中考五模數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年北京市豐臺區(qū)中考五模數(shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年北京市豐臺區(qū)中考五模數(shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年北京市豐臺區(qū)中考五模數(shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年北京市豐臺區(qū)中考五模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年北京市豐臺區(qū)中考五模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是()A.﹣10 B.﹣5 C.5 D.102.計算﹣的結(jié)果為()A. B. C. D.3.如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數(shù)是()A.45° B.85° C.90° D.95°4.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm5.如圖,在⊙O中,弦AB=CD,AB⊥CD于點E,已知CE?ED=3,BE=1,則⊙O的直徑是()A.2 B. C.2 D.56.將二次函數(shù)的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應(yīng)的函數(shù)表達式是()A. B.C. D.7.如圖,⊙O的半徑為1,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若∠BAC與∠BOC互補,則弦BC的長為()A. B.2 C.3 D.1.58.如圖,直線AB與直線CD相交于點O,E是∠COB內(nèi)一點,且OE⊥AB,∠AOC=35°,則∠EOD的度數(shù)是()A.155° B.145° C.135° D.125°9.下列圖形中,是正方體表面展開圖的是()A. B. C. D.10.已知圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,要使這兩圓沒有公共點,那么d的值可以?。ǎ〢.11; B.6; C.3; D.1.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.12.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.13.如圖,把正方形鐵片OABC置于平面直角坐標系中,頂點A的坐標為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點P的坐標為____________________.14.如圖,菱形的邊,,是上一點,,是邊上一動點,將梯形沿直線折疊,的對應(yīng)點為,當?shù)拈L度最小時,的長為__________.15.某風扇在網(wǎng)上累計銷量約1570000臺,請將1570000用科學(xué)記數(shù)法表示為_____.16.如圖,在平面直角坐標系中,已知點A(﹣4,0)、B(0,3),對△AOB連續(xù)作旋轉(zhuǎn)變換依次得到三角形(1)、(2)、(3)、(4)、…,則第(5)個三角形的直角頂點的坐標是_____,第(2018)個三角形的直角頂點的坐標是______.三、解答題(共8題,共72分)17.(8分)如圖,直線與雙曲線相交于、兩點.(1),點坐標為.(2)在軸上找一點,在軸上找一點,使的值最小,求出點兩點坐標18.(8分)今年義烏市準備爭創(chuàng)全國衛(wèi)生城市,某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.(1)求溫馨提示牌和垃圾箱的單價各是多少元?(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?19.(8分)計算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).20.(8分)如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.判斷直線MN與⊙O的位置關(guān)系,并說明理由;若OA=4,∠BCM=60°,求圖中陰影部分的面積.21.(8分)十八大報告首次提出建設(shè)生態(tài)文明,建設(shè)美麗中國.十九大報告再次明確,到2035年美麗中國目標基本實現(xiàn).森林是人類生存發(fā)展的重要生態(tài)保障,提高森林的數(shù)量和質(zhì)量對生態(tài)文明建設(shè)非常關(guān)鍵.截止到2013年,我國已經(jīng)進行了八次森林資源清查,其中全國和北京的森林面積和森林覆蓋率情況如下:表1全國森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)122001150125001340015894.0917490.9219545.2220768.73森林覆蓋率12.7%12%12.98%13.92%16.55%18.21%20.36%21.63%表2北京森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)33.7437.8852.0558.81森林覆蓋率11.2%8.1%12.08%14.99%18.93%21.26%31.72%35.84%(以上數(shù)據(jù)來源于中國林業(yè)網(wǎng))請根據(jù)以上信息解答下列問題:(1)從第次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;(2)補全以下北京森林覆蓋率折線統(tǒng)計圖,并在圖中標明相應(yīng)數(shù)據(jù);(3)第八次清查的全國森林面積20768.73(萬公頃)記為a,全國森林覆蓋率21.63%記為b,到2018年第九次森林資源清查時,如果全國森林覆蓋率達到27.15%,那么全國森林面積可以達到萬公頃(用含a和b的式子表示).22.(10分)如圖,一次函數(shù)y=kx+b的圖象與坐標軸分別交于A、B兩點,與反比例函數(shù)y=的圖象在第一象限的交點為C,CD⊥x軸于D,若OB=1,OD=6,△AOB的面積為1.求一次函數(shù)與反比例函數(shù)的表達式;當x>0時,比較kx+b與的大小.23.(12分)如圖,拋物線y=x2+bx+c與x軸交于點A(﹣1,0),B(4,0)與y軸交于點C,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標為(m,0),過點P作x軸的垂線1,交拋物線與點Q.求拋物線的解析式;當點P在線段OB上運動時,直線1交BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;在點P運動的過程中,坐標平面內(nèi)是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.24.已知拋物線的開口向上頂點為P(1)若P點坐標為(4,一1),求拋物線的解析式;(2)若此拋物線經(jīng)過(4,一1),當-1≤x≤2時,求y的取值范圍(用含a的代數(shù)式表示)(3)若a=1,且當0≤x≤1時,拋物線上的點到x軸距離的最大值為6,求b的值

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

作AE⊥BC于E,由四邊形ABCD為平行四邊形得AD∥x軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據(jù)反比例函數(shù)k的幾何意義得到S矩形ADOE=|?k|,利用反比例函數(shù)圖象得到.【詳解】作AE⊥BC于E,如圖,∵四邊形ABCD為平行四邊形,∴AD∥x軸,∴四邊形ADOE為矩形,∴S平行四邊形ABCD=S矩形ADOE,而S矩形ADOE=|?k|,∴|?k|=1,∵k<0,∴k=?1.故選A.【點睛】本題考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為|k|.2、A【解析】

根據(jù)分式的運算法則即可【詳解】解:原式=,故選A.【點睛】本題主要考查分式的運算。3、B【解析】

解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點睛】本題考查圓周角定理;圓心角、弧、弦的關(guān)系.4、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關(guān)于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關(guān)于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.5、C【解析】

作OH⊥AB于H,OG⊥CD于G,連接OA,根據(jù)相交弦定理求出EA,根據(jù)題意求出CD,根據(jù)垂徑定理、勾股定理計算即可.【詳解】解:作OH⊥AB于H,OG⊥CD于G,連接OA,由相交弦定理得,CE?ED=EA?BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE?ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由題意得,四邊形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=,∴⊙O的直徑為,故選C.【點睛】此題考查了相交弦定理、垂徑定理、勾股定理、矩形的判定與性質(zhì);根據(jù)圖形作出相應(yīng)的輔助線是解本題的關(guān)鍵.6、B【解析】

拋物線平移不改變a的值,由拋物線的頂點坐標即可得出結(jié)果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),

可設(shè)新拋物線的解析式為:y=(x-h)1+k,

代入得:y=(x+1)1-1.

∴所得圖象的解析式為:y=(x+1)1-1;

故選:B.【點睛】本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關(guān)鍵是得到新拋物線的頂點坐標.7、A【解析】分析:作OH⊥BC于H,首先證明∠BOC=120,在Rt△BOH中,BH=OB?sin60°=1×,即可推出BC=2BH=,詳解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB?sin60°=1×=,∴BC=2BH=.故選A.點睛:本題考查三角形的外接圓與外心、銳角三角函數(shù)、垂徑定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線.8、D【解析】

解:∵∴∵EO⊥AB,∴∴故選D.9、C【解析】

利用正方體及其表面展開圖的特點解題.【詳解】解:A、B、D經(jīng)過折疊后,下邊沒有面,所以不可以圍成正方體,C能折成正方體.故選C.【點睛】本題考查了正方體的展開圖,解題時牢記正方體無蓋展開圖的各種情形.10、D【解析】∵圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,∴當d>4+7或d<7-4時,這兩個圓沒有公共點,即d>11或d<3,∴上述四個數(shù)中,只有D選項中的1符合要求.故選D.點睛:兩圓沒有公共點,存在兩種情況:(1)兩圓外離,此時圓心距>兩圓半徑的和;(1)兩圓內(nèi)含,此時圓心距<大圓半徑-小圓半徑.二、填空題(本大題共6個小題,每小題3分,共18分)11、3<d<7【解析】

若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關(guān)系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【點睛】本題考查的知識點是圓與圓的位置關(guān)系,解題的關(guān)鍵是熟練的掌握圓與圓的位置關(guān)系.12、5【解析】

已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應(yīng)等于AB的一半.【詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【點睛】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關(guān)鍵.13、(6053,2).【解析】

根據(jù)前四次的坐標變化總結(jié)規(guī)律,從而得解.【詳解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…發(fā)現(xiàn)點P的位置4次一個循環(huán),∵2017÷4=504余1,P2017的縱坐標與P1相同為2,橫坐標為5+3×2016=6053,∴P2017(6053,2),故答案為(6053,2).考點:坐標與圖形變化﹣旋轉(zhuǎn);規(guī)律型:點的坐標.14、【解析】如圖所示,過點作,交于點.在菱形中,∵,且,所以為等邊三角形,.根據(jù)“等腰三角形三線合一”可得,因為,所以.在中,根據(jù)勾股定理可得,.因為梯形沿直線折疊,點的對應(yīng)點為,根據(jù)翻折的性質(zhì)可得,點在以點為圓心,為半徑的弧上,則點在上時,的長度最小,此時,因為.所以,所以,所以.點睛:A′為四邊形ADQP沿PQ翻折得到,由題目中可知AP長為定值,即A′點在以P為圓心、AP為半徑的圓上,當C、A′、P在同一條直線時CA′取最值,由此結(jié)合直角三角形勾股定理、等邊三角形性質(zhì)求得此時CQ的長度即可.15、1.57×1【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將1570000用科學(xué)記數(shù)法表示為1.57×1.故答案為1.57×1.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.16、(16,)(8068,)【解析】

利用勾股定理列式求出AB的長,再根據(jù)圖形寫出第(5)個三角形的直角頂點的坐標即可;觀察圖形不難發(fā)現(xiàn),每3個三角形為一個循環(huán)組依次循環(huán),用2018除以3,根據(jù)商和余數(shù)的情況確定出第(2018)個三角形的直角頂點到原點O的距離,然后寫出坐標即可.【詳解】∵點A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴第(2)個三角形的直角頂點的坐標是(4,);∵5÷3=1余2,∴第(5)個三角形的直角頂點的坐標是(16,),∵2018÷3=672余2,∴第(2018)個三角形是第672組的第二個直角三角形,其直角頂點與第672組的第二個直角三角形頂點重合,∴第(2018)個三角形的直角頂點的坐標是(8068,).故答案為:(16,);(8068,)【點睛】本題考查了坐標與圖形變化-旋轉(zhuǎn),解題的關(guān)鍵是根據(jù)題意找出每3個三角形為一個循環(huán)組依次循環(huán).三、解答題(共8題,共72分)17、(1),;(1),.【解析】

(1)由點A在一次函數(shù)圖象上,將A(-1,a)代入y=x+4,求出a的值,得到點A的坐標,再由點A的坐標利用待定系數(shù)法求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標;

(1)作點A關(guān)于y軸的對稱點A′,作點B作關(guān)于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA.利用待定系數(shù)法求出直線A′B′的解析式,進而求出P、Q兩點坐標.【詳解】解:(1)把點A(-1,a)代入一次函數(shù)y=x+4,

得:a=-1+4,解得:a=3,

∴點A的坐標為(-1,3).

把點A(-1,3)代入反比例函數(shù)y=,

得:k=-3,

∴反比例函數(shù)的表達式y(tǒng)=-.

聯(lián)立兩個函數(shù)關(guān)系式成方程組得:解得:或∴點B的坐標為(-3,1).

故答案為3,(-3,1);(1)作點A關(guān)于y軸的對稱點A′,作點B作關(guān)于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA,如圖所示.

∵點B、B′關(guān)于x軸對稱,點B的坐標為(-3,1),

∴點B′的坐標為(-3,-1),PB=PB′,

∵點A、A′關(guān)于y軸對稱,點A的坐標為(-1,3),

∴點A′的坐標為(1,3),QA=QA′,

∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最?。?/p>

設(shè)直線A′B′的解析式為y=mx+n,

把A′,B′兩點代入得:解得:∴直線A′B′的解析式為y=x+1.

令y=0,則x+1=0,解得:x=-1,點P的坐標為(-1,0),

令x=0,則y=1,點Q的坐標為(0,1).【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題、待定系數(shù)法求函數(shù)解析式、軸對稱中的最短線路問題,解題的關(guān)鍵是:(1)聯(lián)立兩函數(shù)解析式成方程組,解方程組求出交點坐標;(1)根據(jù)軸對稱的性質(zhì)找出點P、Q的位置.本題屬于基礎(chǔ)題,難度適中,解決該題型題目時,聯(lián)立解析式成方程組,解方程組求出交點坐標是關(guān)鍵.18、(1)溫馨提示牌和垃圾箱的單價各是50元和150元;(2)答案見解析【解析】

(1)根據(jù)“購買2個溫馨提示牌和3個垃圾箱共需550元”,建立方程求解即可得出結(jié)論;(2)根據(jù)“費用不超過10000元和至少需要安放48個垃圾箱”,建立不等式即可得出結(jié)論.【詳解】(1)設(shè)溫情提示牌的單價為x元,則垃圾箱的單價為3x元,根據(jù)題意得,2x+3×3x=550,∴x=50,經(jīng)檢驗,符合題意,∴3x=150元,即:溫馨提示牌和垃圾箱的單價各是50元和150元;(2)設(shè)購買溫情提示牌y個(y為正整數(shù)),則垃圾箱為(100﹣y)個,根據(jù)題意得,意,∴∵y為正整數(shù),∴y為50,51,52,共3中方案;有三種方案:①溫馨提示牌50個,垃圾箱50個,②溫馨提示牌51個,垃圾箱49個,③溫馨提示牌52個,垃圾箱48個,設(shè)總費用為w元W=50y+150(100﹣y)=﹣100y+15000,∵k=-100,∴w隨y的增大而減小∴當y=52時,所需資金最少,最少是9800元.【點睛】此題主要考查了一元一次不等式組,一元一次方程的應(yīng)用,正確找出相等關(guān)系是解本題的關(guān)鍵.19、(1)1;(2).【解析】

(1)先計算乘方、絕對值、負整數(shù)指數(shù)冪和零指數(shù)冪,再計算乘法,最后計算加減運算可得;(2)先將分子、分母因式分解,再計算乘法,最后計算減法即可得.【詳解】(1)原式=8-4+×6+1=8-4+2+1=1.(2)原式===.【點睛】本題主要考查實數(shù)和分式的混合運算,解題的關(guān)鍵是掌握絕對值性質(zhì)、負整數(shù)指數(shù)冪、零指數(shù)冪及分式混合運算順序和運算法則.20、(1)相切;(2).【解析】試題分析:(1)MN是⊙O切線,只要證明∠OCM=90°即可.(2)求出∠AOC以及BC,根據(jù)S陰=S扇形OAC﹣S△OAC計算即可.試題解析:(1)MN是⊙O切線.理由:連接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切線.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S陰=S扇形OAC﹣S△OAC=.考點:直線與圓的位置關(guān)系;扇形面積的計算.21、(1)四;(2)見解析;(3).【解析】

(1)比較兩個折線統(tǒng)計圖,找出滿足題意的調(diào)查次數(shù)即可;(2)描出第四次與第五次北京森林覆蓋率,補全折線統(tǒng)計圖即可;(3)根據(jù)第八次全面森林面積除以森林覆蓋率求出全國總面積,除以第九次的森林覆蓋率,即可得到結(jié)果.【詳解】解:(1)觀察兩折線統(tǒng)計圖比較得:從第四次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;故答案為四;(2)補全折線統(tǒng)計圖,如圖所示:(3)根據(jù)題意得:×27.15%=,則全國森林面積可以達到萬公頃,故答案為.【點睛】此題考查了折線統(tǒng)計圖,弄清題中的數(shù)據(jù)是解本題的關(guān)鍵.22、(1),;(2)當0<x<6時,kx+b<,當x>6時,kx+b>【解析】

(1)根據(jù)點A和點B的坐標求出一次函數(shù)的解析式,再求出C的坐標6,2),利用待定系數(shù)法求解即可求出解析式(2)由C(6,2)分析圖形可知,當0<x<6時,kx+b<,當x>6時,kx+b>【詳解】(1)S△AOB=OA?OB=1,∴OA=2,∴點A的坐標是(0,﹣2),∵B(1,0)∴∴∴y=x﹣2.當x=6時,y=×6﹣2=2,∴C(6,2)∴m=2×6=3.∴y=.(2)由C(6,2),觀察圖象可知:當0<x<6時,kx+b<,當x>6時,kx+b>.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵在于求出C的坐標23、(1);(2)當m=2時,四邊形CQMD為平行四邊形;(3)Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2)【解析】

(1)直接將A(-1,0),B(4,0)代入拋物線y=x2+bx+c方程即可;

(2)由(1)中的解析式得出點C的坐標C(0,-2),從而得出點D(0,2),求出直線BD:y=?x+2,設(shè)點M(m,?m+2),Q(m,m2?m?2),可得MQ=?m2+m+4,根據(jù)平行四邊形的性質(zhì)可得QM=CD=4,即?m2+m+4=4可解得m=2;

(3)由Q是以BD為直角邊的直角三角形,所以分兩種情況討論,①當∠BDQ=90°時,則BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),②當∠DBQ=90°時,則BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2).【詳解】(1)由題意知,∵點A(﹣1,0),B(4,0)在拋物線y=x2+bx+c上,∴解得:∴所求拋物線的解析式為(2)由(1)知拋物線的解析式為,令x=0,得y=﹣2∴點C的坐標為C(0,﹣2)∵點D與點C關(guān)于x軸對稱∴點D的坐標為D(0,2)設(shè)直線BD的解析式為:y=kx+2且B(4,0)∴0=4k+2,解得:∴直線BD的解析式為:∵點P的坐標為(m,0),過點P作x軸的垂線1,交BD于點M,交拋物線與點Q∴可設(shè)點M,Q∴MQ=∵四邊形CQMD是平行四邊形∴QM=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論