版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
甘肅省慶陽長慶中學(xué)隴東中學(xué)分校2025屆高一下數(shù)學(xué)期末學(xué)業(yè)水平測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在空間中,可以確定一個平面的條件是()A.一條直線B.不共線的三個點C.任意的三個點D.兩條直線2.已知直角三角形ABC,斜邊,D為AB邊上的一點,,,則CD的長為()A. B. C.2 D.33.如圖,在中,已知D是邊延長線上一點,若,點E為線段的中點,,則()A. B. C. D.4.如圖所示是正方體的平面展開圖,在這個正方體中CN與BM所成角為()A.30° B.45° C.60° D.90°5.已知,,則等于()A. B. C. D.6.圓x-12+y-3A.1 B.2 C.2 D.37.已知點P為圓上一個動點,O為坐標(biāo)原點,過P點作圓O的切線與圓相交于兩點A,B,則的最大值為()A. B.5 C. D.8.在鈍角三角形ABC中,若B=45°,a=2,則邊長cA.(1,2) B.(0,1)∪(9.已知數(shù)列滿足,,則()A. B. C. D.10.已知等比數(shù)列中,,且有,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.過直線上一點作圓的兩條切線,切點分別為,若的最大值為,則實數(shù)__________.12.化簡:______.(要求將結(jié)果寫成最簡形式)13.關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:①y=f(x)的表達(dá)式可改寫為y=4cos(2x﹣);②y=f(x)是以2π為最小正周期的周期函數(shù);③y=f(x)的圖象關(guān)于點對稱;④y=f(x)的圖象關(guān)于直線x=﹣對稱.其中正確的命題的序號是.14.在邊長為2的正△ABC所在平面內(nèi),以A為圓心,為半徑畫弧,分別交AB,AC于D,E.若在△ABC內(nèi)任丟一粒豆子,則豆子落在扇形ADE內(nèi)的概率是________.15.已知,且,則_____.16.函數(shù)f(x)=coscos的最小正周期為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四邊形中,已知,,,,設(shè).(1)求(用表示);(2)求的最小值.(結(jié)果精確到米)18.已知公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列.(1)求數(shù)列{an}和{bn}的通項公式;(2)令cn=an?bn,求數(shù)列{cn}的前n項和Sn.19.某運動愛好者對自己的步行運動距離(單位:千米)和步行運動時間(單位:分鐘)進(jìn)行統(tǒng)計,得到如下的統(tǒng)計資料:如果與存在線性相關(guān)關(guān)系,(1)求線性回歸方程(精確到0.01);(2)將分鐘的時間數(shù)據(jù)稱為有效運動數(shù)據(jù),現(xiàn)從這6個時間數(shù)據(jù)中任取3個,求抽取的3個數(shù)據(jù)恰有兩個為有效運動數(shù)據(jù)的概率.參考數(shù)據(jù):,參考公式:,.20.在物理中,簡諧運動中單擺對平衡位置的位移與時間的關(guān)系,交流電與時間的關(guān)系都是形如的函數(shù).已知電流(單位:)隨時間(單位:)變化的函數(shù)關(guān)系是:,(1)求電流變化的周期、頻率、振幅及其初相;(2)當(dāng),,,,(單位:)時,求電流.21.已知集合,其中,由中的元素構(gòu)成兩個相應(yīng)的集合:,.其中是有序數(shù)對,集合和中的元素個數(shù)分別為和.若對于任意的,總有,則稱集合具有性質(zhì).(Ⅰ)檢驗集合與是否具有性質(zhì)并對其中具有性質(zhì)的集合,寫出相應(yīng)的集合和.(Ⅱ)對任何具有性質(zhì)的集合,證明.(Ⅲ)判斷和的大小關(guān)系,并證明你的結(jié)論.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:根據(jù)平面的基本性質(zhì)及推論,即確定平面的幾何條件,即可知道答案.解:對于A.過一條直線可以有無數(shù)個平面,故錯;對于C.過共線的三個點可以有無數(shù)個平面,故錯;對于D.過異面的兩條直線不能確定平面,故錯;由平面的基本性質(zhì)及推論知B正確.故選B.考點:平面的基本性質(zhì)及推論.2、A【解析】
設(shè),利用勾股定理求出的值即得解.【詳解】如圖,由于,所以設(shè),所以所以.故選:A【點睛】本題主要考查解直角三角形,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.3、B【解析】
由,,,,代入化簡即可得出.【詳解】,帶人可得,可得,故選B.【點睛】本題考查了向量共線定理、向量的三角形法則,考查了推理能力與計算能力,屬于中檔題.4、C【解析】
把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故∠EBM(或其補(bǔ)角)為所求.再由△BEM是等邊三角形,可得∠EBM=60°,從而得出結(jié)論.【詳解】把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故異面直線CN與BM所成的角就是BE和BM所成的角,故∠EBM(或其補(bǔ)角)為所求,再由BEM是等邊三角形,可得∠EBM=60,故選:C【點睛】本題主要考查了求異面直線所成的角,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.5、D【解析】
通過化簡可得,再根據(jù),可得,利用同角三角函數(shù)可得,則答案可得.【詳解】解:,又,得,即,又,且,解得,,故選:D.【點睛】本題考查三角恒等變形的化簡和求值,是中檔題.6、C【解析】
先計算圓心到y(tǒng)軸的距離,再利用勾股定理得到弦長.【詳解】x-12+y-32=2圓心到y(tǒng)軸的距離d=1弦長l=2r故答案選C【點睛】本題考查了圓的弦長公式,意在考查學(xué)生的計算能力.7、A【解析】
作交于,連接設(shè),得,,進(jìn)而,換元,得,通過求得的范圍即可求解【詳解】作交于,連接設(shè),則,∴取,∴.顯然易知令,,當(dāng)且僅當(dāng)?shù)忍柍闪?;此時∴故選A【點睛】本題考查圓的幾何性質(zhì),切線的應(yīng)用,弦長公式,考查函數(shù)最值得求解,考查換元思想,是難題8、D【解析】試題分析:解法一:,由三角形正弦定理誘導(dǎo)公式有,利用三角恒等公式能夠得到,當(dāng)A為銳角時,0°<A<45°,,即,當(dāng)A為鈍角時,90°<A<135°,,綜上所述,;解法二:利用圖形,如圖,,,當(dāng)點A(D)在線段BE上時(不含端點B,E),為鈍角,此時;當(dāng)點A在線段EF上時,為銳角三角形或直角三角形;當(dāng)點A在射線FG(不含端點F)上時,為鈍角,此時,所以c的取值范圍為.考點:解三角形.【思路點睛】解三角形需要靈活運用正余弦定理以及三角形的恒等變形,在解答本題時,利用三角形內(nèi)角和,將兩角化作一角,再利用正弦定理即可列出邊長c與角A的關(guān)系式,根據(jù)角A的取值范圍即可求出c的范圍,本題亦可利用物理學(xué)中力的合成,合力的大小來確定c的大小,正如解法二所述.9、A【解析】
由給出的遞推式變形,構(gòu)造出新的等比數(shù)列,由等比數(shù)列的通項公式求出的表達(dá)式,再利用等比數(shù)列的求和公式求解即可.【詳解】解:解:在數(shù)列中,
由,得,
,
,
則數(shù)列是以2為首項,以2為公比的等比數(shù)列,
.,故選:A.【點睛】本題考查了數(shù)列的遞推式,考查了等比關(guān)系的確定以及等比數(shù)列的求和公式,屬中檔題.10、A【解析】,,所以選A二、填空題:本大題共6小題,每小題5分,共30分。11、1或;【解析】
要使最大,則最?。驹斀狻繄A的標(biāo)準(zhǔn)方程為,圓心為,半徑為.∵若的最大值為,∴,解得或.故答案為1或.【點睛】本題考查直線與圓的位置關(guān)系,解題思路是平面上對圓的張角問題,顯然在點固定時,圓外的點作圓的兩條切線,這兩條切線間的夾角是最大角,而當(dāng)點離圓越近時,這個又越大.12、【解析】
結(jié)合誘導(dǎo)公式化簡,再結(jié)合兩角差正弦公式分析即可【詳解】故答案為:【點睛】本題考查三角函數(shù)的化簡,誘導(dǎo)公式的使用,屬于基礎(chǔ)題13、①③【解析】
∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正確;∵T=,故②不正確;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的圖象關(guān)于點對稱,③正確④不正確;故答案為①③.14、【解析】
由三角形ABC的邊長為2不難求出三角形ABC的面積,又由扇形的半徑為,也可以求出扇形的面積,代入幾何概型的計算公式即可求出答案.【詳解】由題意知,在△ABC中,BC邊上的高AO正好為,∴圓與邊CB相切,如圖.S扇形=×××=,S△ABC=×2×2×=,∴P==.【點睛】本題考查面積型幾何概型概率的求法,屬基礎(chǔ)題.15、【解析】
首先根據(jù)已知條件求得的值,平方后利用同角三角函數(shù)的基本關(guān)系式求得的值.【詳解】由得,兩邊平方并化簡得,由于,所以.而,由于,所以【點睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.16、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期為T==2三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)米【解析】
(1)在中,由正弦定理,求得,再在中,利用正弦定理,即可求得的表達(dá)式;(2)在中,由正弦定理,求得,進(jìn)而可得到,利用三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,在中,,由正弦定理,可得,即,在中,,由正弦定理,可得,即,(2)在中,由正弦定理,可得,即所以因為,所以所以當(dāng)時,取得最小值最小值約為米.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關(guān)系,熟練掌握定理、合理運用是解本題的關(guān)鍵.通常當(dāng)涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時,運用余弦定理求解.18、(1)an=2n+1;bn=3n;(2)Sn=n?3n+1.【解析】
(1)利用基本元的思想,結(jié)合等差數(shù)列、等比數(shù)列的通項公式、等比中項的性質(zhì)列方程,解方程求得的值,從而求得數(shù)列的通項公式.(2)利用錯位相減求和法求得數(shù)列的前項和.【詳解】(1)公差d不為零的等差數(shù)列{an}和公比為q的等比數(shù)列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列,可得3q=3+3d,a1a13=a42,即(3+3d)2=3(3+12d),解得d=2,q=3,可得an=3+2(n﹣1)=2n+1;bn=3n;(2)cn=an?bn=(2n+1)?3n,前n項和Sn=3?3+5?32+7?33+…+(2n+1)?3n,3Sn=3?32+5?33+7?34+…+(2n+1)?3n+1,兩式相減可得﹣2Sn=9+2(32+33+…+3n)﹣(2n+1)?3n+1=9+2?(2n+1)?3n+1,化簡可得Sn=n?3n+1.【點睛】本小題主要考查等差數(shù)列,等比數(shù)列通項公式,考查錯位相減求和法,考查運算求解能力,屬于中檔題.19、(1)(2)【解析】
(1)先計算所給數(shù)據(jù)距離、時間的平均值,,利用公式求,再利用回歸方程求.(2)由(1)計算的個數(shù),先求從6個中任取3個數(shù)據(jù)的總的取法,再計算抽取的3個數(shù)據(jù)恰有兩個為有效運動數(shù)據(jù)的取法,利用古典概型概率計算公式可得所求.【詳解】解:(1)依題意得,所以又因為,故線性回歸方程為.(2)將的6個值,代入(1)中回歸方程可知,前3個小于30,后3個大于30,所以滿足分鐘的有效運動數(shù)據(jù)的共有3個,設(shè)3個有效運動數(shù)據(jù)為,另3個不是有效運動數(shù)據(jù)為,則從6個數(shù)據(jù)中任取3個共有20種情況(或一一列舉),其中,抽取的3個數(shù)據(jù)恰有兩個為有效運動數(shù)據(jù)的有9種情況,即,,所以從這6個時間數(shù)據(jù)中任取3個,抽取的3個數(shù)據(jù)恰有兩個為有效運動數(shù)據(jù)的概率為.【點睛】本題考查線性回歸方程的建立,古典概型的概率,考查數(shù)據(jù)處理能力,運用知識解決實際問題的能力,屬于中檔題.20、(1)周期:,頻率:,振幅:,初相:;(2)當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,.【解析】
(1)按照函數(shù)的周期、頻率、振幅和初相的求法求解即可;(2)將,,,,分別代入函數(shù)關(guān)系中計算即可.【詳解】(1)周期:,頻率:,振幅:,初相:;(2)當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,.【點睛】本題考查函數(shù)模型在物理學(xué)中的應(yīng)用,考查對基礎(chǔ)知識的掌握,考查計算能力.21、(Ⅰ)集合不具有性質(zhì),集合具有性質(zhì),相應(yīng)集合,,集合,(Ⅱ)見解析(Ⅲ)【解析】解:集合不具有性質(zhì).集合具有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國農(nóng)業(yè)銀行借款意向合同
- 2024版木模板施工合同范本
- 2024某科技公司關(guān)于手機(jī)應(yīng)用開發(fā)與推廣的合同
- 兒童劇編劇創(chuàng)作合同
- 建筑供暖系統(tǒng)監(jiān)理合同協(xié)議
- 云計算招投標(biāo)合同模板
- 城市供熱人工費施工合同
- 2024年鐵藝庭院設(shè)施施工勞務(wù)分包合同協(xié)議3篇
- 馬術(shù)比賽網(wǎng)架施工合同
- 環(huán)保工程設(shè)備能效評估工程隊合同
- 礦業(yè)公司規(guī)章制度匯編
- 《高低壓配電室施工工藝標(biāo)準(zhǔn)》
- 介入導(dǎo)管室護(hù)士長職責(zé)
- 2024年太陽能光伏組件高空清洗作業(yè)人員安全保障合同3篇
- 大學(xué)學(xué)業(yè)規(guī)劃講座
- 《國家課程建設(shè)》課件
- 四川省南充市2023-2024學(xué)年高一上學(xué)期期末考試 歷史 含解析
- 2024-2025學(xué)年湖北省武漢市華中師大一附中高三上學(xué)期期中英語試題及答案
- 浙江省衢州市2023-2024學(xué)年高一上學(xué)期1月期末數(shù)學(xué)試題 含解析
- 【課件】Unit+5+Fun+Clubs+Section+B+1a-2b課件人教版(2024)七年級英語上冊++
- 江蘇省南通市海門區(qū)2023-2024學(xué)年三年級上學(xué)期期末語文試題
評論
0/150
提交評論