湖北省黃梅縣第二中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
湖北省黃梅縣第二中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
湖北省黃梅縣第二中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
湖北省黃梅縣第二中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
湖北省黃梅縣第二中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省黃梅縣第二中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.奇函數(shù)在上單調(diào)遞減,且,則不等式的解集是().A. B.C. D.2.把一塊長是10,寬是8,高是6的長方形木料削成一個體積最大的球,這個球的體積等于()A. B.480 C. D.3.直線的傾斜角是()A.30° B.60° C.120° D.135°4.已知數(shù)據(jù),2的平均值為2,方差為1,則數(shù)據(jù)相對于原數(shù)據(jù)()A.一樣穩(wěn)定 B.變得比較穩(wěn)定C.變得比較不穩(wěn)定 D.穩(wěn)定性不可以判斷5.已知全集,集合,,則()A. B.C. D.6.在中,內(nèi)角所對的邊分別為.若,則角的值為()A. B. C. D.7.已知兩個球的表面積之比為,則這兩個球的體積之比為()A. B. C. D.8.將函數(shù)的圖象向右平移個的單位長度,再將所得到的函數(shù)圖象上所有點的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),則所得到的圖象的函數(shù)解析式為()A. B.C. D.9.把正方形ABCD沿對角線AC折起,當(dāng)以A,B,C,D四點為頂點的三棱錐體積最大時,二面角的大小為()A.30° B.45° C.60° D.90°10.設(shè)向量,,則向量與的夾角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若滿足約束條件則的最大值為__________.12.已知正實數(shù)滿足,則的最小值為__________.13.已知,,若,則________.14.直線與直線的交點為,則________.15.若直線與曲線相交于A,B兩點,O為坐標(biāo)原點,當(dāng)?shù)拿娣e取最大值時,實數(shù)m的取值____.16.已知正實數(shù)a,b滿足2a+b=1,則1a三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等比數(shù)列的前n項和為,,且.(1)求數(shù)列的通項公式;(2)若數(shù)列為遞增數(shù)列,數(shù)列滿足,求數(shù)列的前n項和.(3)在條件(2)下,若不等式對任意正整數(shù)n都成立,求的取值范圍.18.中,角的對邊分別為,且.(I)求的值;(II)求的值.19.在某市高三教學(xué)質(zhì)量檢測中,全市共有名學(xué)生參加了本次考試,其中示范性高中參加考試學(xué)生人數(shù)為人,非示范性高中參加考試學(xué)生人數(shù)為人.現(xiàn)從所有參加考試的學(xué)生中隨機(jī)抽取人,作檢測成績數(shù)據(jù)分析.(1)設(shè)計合理的抽樣方案(說明抽樣方法和樣本構(gòu)成即可);(2)依據(jù)人的數(shù)學(xué)成績繪制了如圖所示的頻率分布直方圖,據(jù)此估計本次檢測全市學(xué)生數(shù)學(xué)成績的平均分;20.近年來,鄭州經(jīng)濟(jì)快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢在同級別的城市內(nèi)無能出其右.為了調(diào)查鄭州市民對出行的滿意程度,研究人員隨機(jī)抽取了1000名市民進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.(I)求的值;(Ⅱ)求被調(diào)查的市民的滿意程度的平均數(shù),眾數(shù),中位數(shù);(Ⅲ)若按照分層抽樣從,中隨機(jī)抽取8人,再從這8人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在的概率.21.若數(shù)列中存在三項,按一定次序排列構(gòu)成等比數(shù)列,則稱為“等比源數(shù)列”。(1)在無窮數(shù)列中,,,求數(shù)列的通項公式;(2)在(1)的結(jié)論下,試判斷數(shù)列是否為“等比源數(shù)列”,并證明你的結(jié)論;(3)已知無窮數(shù)列為等差數(shù)列,且,(),求證:數(shù)列為“等比源數(shù)列”.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

因為函數(shù)式奇函數(shù),在上單調(diào)遞減,根據(jù)奇函數(shù)的性質(zhì)得到在上函數(shù)仍是減函數(shù),再根據(jù)可畫出函數(shù)在上的圖像,根據(jù)對稱性畫出在上的圖像.根據(jù)圖像得到的解集是:.故選A.2、A【解析】

由題意知,此球是棱長為6的正方體的內(nèi)切球,根據(jù)其幾何特征知,此球的直徑與正方體的棱長是相等的,故可得球的直徑為6,再由球的體積公式求解即可.【詳解】解:由已知可得球的直徑為6,故半徑為3,其體積是,故選:.【點睛】本題考查長方體內(nèi)切球的幾何特征,以及球的體積公式,屬于基礎(chǔ)題.3、C【解析】

根據(jù)直線方程求出斜率即可得到傾斜角.【詳解】由題:直線的斜率為,所以傾斜角為120°.故選:C【點睛】此題考查根據(jù)直線方程求傾斜角,需要熟練掌握直線傾斜角與斜率的關(guān)系,熟記常見特殊角的三角函數(shù)值.4、C【解析】

根據(jù)均值定義列式計算可得的和,從而得它們的均值,再由方差公式可得,從而得方差.然后判斷.【詳解】由題可得:平均值為2,由,,所以變得不穩(wěn)定.故選:C.【點睛】本題考查均值與方差的計算公式,考查方差的含義.屬于基礎(chǔ)題.5、A【解析】

本題根據(jù)交集、補集的定義可得.容易題,注重了基礎(chǔ)知識、基本計算能力的考查.【詳解】,則【點睛】易于理解集補集的概念、交集概念有誤.6、C【解析】

根據(jù)正弦定理將邊化角,可得,由可求得,根據(jù)的范圍求得結(jié)果.【詳解】由正弦定理得:本題正確選項:【點睛】本題考查正弦定理邊角互化的應(yīng)用,涉及到兩角和差正弦公式、三角形內(nèi)角和、誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】

根據(jù)兩個球的表面積之比求出半徑之比,利用半徑之比求出球的體積比.【詳解】由題知,則.故選:D.【點睛】本題主要考查了球體的表面積公式和體積公式,屬于基礎(chǔ)題.8、A【解析】

由題意利用函數(shù)的圖象變換法則,即可得出結(jié)論。【詳解】將函數(shù)的圖象向右平移個的單位長度,可得的圖象,再將所得到的函數(shù)圖象上所有點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),則所得到的圖象的函數(shù)解析式為,故選.【點睛】本題主要考查函數(shù)的圖象變換法則,注意對的影響。9、D【解析】

當(dāng)平面ACD垂直于平面BCD時體積最大,得到答案.【詳解】取中點,連接當(dāng)平面ACD垂直于平面BCD時等號成立.此時二面角為90°故答案選D【點睛】本題考查了三棱錐體積的最大值,確定高的值是解題的關(guān)鍵.10、C【解析】

由條件有,利用公式可求夾角.【詳解】,.又又向量與的夾角的范圍是向量與的夾角為.故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

作出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義可知當(dāng)時,.【詳解】不等式組表示的可行域是以為頂點的三角形區(qū)域,如下圖所示,目標(biāo)函數(shù)的最大值必在頂點處取得,易知當(dāng)時,.【點睛】線性規(guī)劃問題是高考中??伎键c,主要以選擇及填空的形式出現(xiàn),基本題型為給出約束條件求目標(biāo)函數(shù)的最值,主要結(jié)合方式有:截距型、斜率型、距離型等.12、6【解析】

由題得,解不等式即得x+y的最小值.【詳解】由題得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值為6.當(dāng)且僅當(dāng)x=y=3時取等.故答案為:6【點睛】本題主要考查基本不等式求最值,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.13、【解析】

先算出的坐標(biāo),然后利用即可求出【詳解】因為,所以因為,所以即,解得故答案為:【點睛】本題考查的是向量在坐標(biāo)形式下的相關(guān)計算,較簡單.14、【解析】

(2,2)為直線和直線的交點,即點(2,2)在兩條直線上,分別代入直線方程,即可求出a,b的值,進(jìn)而得a+b的值?!驹斀狻恳驗橹本€與直線的交點為,所以,,即,,故.【點睛】本題考查求直線方程中的參數(shù),屬于基礎(chǔ)題。15、【解析】

點O到的距離,將的面積用表示出來,再利用均值不等式得到答案.【詳解】曲線表示圓心在原點,半徑為1的圓的上半圓,若直線與曲線相交于A,B兩點,則直線的斜率,則點O到的距離,又,當(dāng)且僅當(dāng),即時,取得最大值.所以,解得舍去).故答案為.【點睛】本題考查了點到直線的距離,三角形面積,均值不等式,意在考查學(xué)生的計算能力.16、9【解析】

利用“乘1法”和基本不等式即可得出.【詳解】解:∵正實數(shù)a,b滿足2a+b=1,∴1a+12b=(2a+b∴1a+故答案為:9【點睛】本題考查了“乘1法”和基本不等式的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)當(dāng)時:;當(dāng)時:(2)(3)【解析】

(1)直接利用等比數(shù)列公式得到答案.(2)利用錯位相減法得到答案.(3)將不等式轉(zhuǎn)化為,根據(jù)雙勾函數(shù)求數(shù)列的最大值得到答案.【詳解】(1)當(dāng)時:當(dāng)時:(2)數(shù)列為遞增數(shù)列,,兩式相加,化簡得到(3)設(shè)原式(為奇數(shù))根據(jù)雙勾函數(shù)知:或時有最大值.時,原式時,原式故【點睛】本題考查了等比數(shù)列的通項公式,錯位相減法求前N項和,恒成立問題,將恒成立問題轉(zhuǎn)化為利用雙勾函數(shù)求數(shù)列的最大值是解題的關(guān)鍵,此題綜合性強(qiáng),計算量大,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.18、(1);(2)5【解析】試題分析:(1)依題意,利用正弦定理及二倍角的正弦即可求得cosA的值;(2)易求sinA=,sinB=,從而利用兩角和的正弦可求得sin(A+B)=,在△ABC中,此即sinC的值,利用正弦定理可求得c的值.試題解析:(1)由正弦定理可得,即:,∴,∴.(2由(1),且,∴,∴,∴==.由正弦定理可得:,∴.19、(1)見解析;(2)92.4【解析】

(1)根據(jù)總體的差異性選擇分層抽樣,再結(jié)合抽樣比計算出非示范性高中和示范性高中所抽取的人數(shù);(2)將每個矩形底邊的中點值乘以相應(yīng)矩形的面積所得結(jié)果,再全部相加可得出本次測驗全市學(xué)生數(shù)學(xué)成績的平均分.【詳解】(1)由于總體有明顯差異的兩部分構(gòu)成,故采用分層抽樣,由題意,從示范性高中抽取人,從非師范性高中抽取人;(2)由頻率分布直方圖估算樣本平均分為推測估計本次檢測全市學(xué)生數(shù)學(xué)平均分為【點睛】本題考查分層抽樣以及計算頻率分布直方圖中的平均數(shù),著重考查學(xué)生對幾種抽樣方法的理解,以及頻率分布直方圖中幾個樣本數(shù)字的計算方法,屬于基礎(chǔ)題.20、(Ⅰ)(Ⅱ)平均數(shù)74.9,眾數(shù)75.14,中位數(shù)75;(Ш)【解析】

(I)根據(jù)頻率之和為列方程,結(jié)合求出的值.(II)利用各組中點值乘以頻率然后相加,求得平均數(shù).利用中位數(shù)是面積之和為的地方,列式求得中位數(shù).以頻率分布直方圖最高一組的中點作為中位數(shù).(III)先計算出從,中分別抽取人和人,再利用列舉法和古典概型概率計算公式,計算出所求的概率.【詳解】解:(I)依題意得,所以,又,所以.(Ⅱ)平均數(shù)為中位數(shù)為眾數(shù)為(Ш)依題意,知分?jǐn)?shù)在的市民抽取了2人,記為,分?jǐn)?shù)在的市民抽取了6人,記為1,2,3,4,5,6,所以從這8人中隨機(jī)抽取2人所有的情況為:,共28種,其中滿足條件的為,共13種,設(shè)“至少有1人的分?jǐn)?shù)在”的事件為,則【點睛】本小題主要考查求解頻率分布直方圖上的未知數(shù),考查利用頻率分布直方圖估計平均數(shù)、中位數(shù)和眾數(shù)的方法,考查利用古典概型求概率.屬于中檔題.21、(1);(2)不是,證明見解析;(3)證明見解析.【解析】

(1)由,可得出,則數(shù)列為等比數(shù)列,然后利用等比數(shù)列的通項公式可間接求出;(2)假設(shè)數(shù)列為“等比源數(shù)列”,則此數(shù)列中存在三項成等比數(shù)列,可得出,展開后得出,然后利用數(shù)的奇偶性即可得出結(jié)論;(3)設(shè)等差數(shù)列的公差為,假設(shè)存在三項使得,展開得出,從而可得知,當(dāng),時,原命題成立.【詳解】(1),得,即,且.所以,數(shù)列是以為首項,以為公比的等比數(shù)列,則,因此,;(2)數(shù)列不是“等比源數(shù)列”,下面用反證法來證明.假設(shè)數(shù)列是“等比源數(shù)列”,則存在三項、、,設(shè).由于數(shù)列為單調(diào)遞增的正項數(shù)列,則,所以.得,化簡得,等式兩邊同時除以得,,且、、,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論