版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則的值為()A. B. C. D.2.在中,角所對(duì)的邊分別為,已知,則()A.或 B. C. D.或3.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=()A.-1 B.1 C.0 D.24.已知向量,滿(mǎn)足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.5.已知函數(shù),,則的極大值點(diǎn)為()A. B. C. D.6.一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積為()A. B. C. D.7.在等差數(shù)列中,若為前項(xiàng)和,,則的值是()A.156 B.124 C.136 D.1808.已知雙曲線(xiàn)(a>0,b>0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60°的直線(xiàn)l與雙曲線(xiàn)的右支有且只有一個(gè)交點(diǎn),則此雙曲線(xiàn)的離心率e的取值范圍是()A. B.(1,2), C. D.9.在區(qū)間上隨機(jī)取一個(gè)實(shí)數(shù),使直線(xiàn)與圓相交的概率為()A. B. C. D.10.雙曲線(xiàn)x26-y23=1的漸近線(xiàn)與圓(x-3)2+y2=A.3 B.2C.3 D.611.已知函數(shù)(,且)在區(qū)間上的值域?yàn)?,則()A. B. C.或 D.或412.已知向量與的夾角為,定義為與的“向量積”,且是一個(gè)向量,它的長(zhǎng)度,若,,則()A. B.C.6 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為_(kāi)__________.14.如圖是一個(gè)算法的偽代碼,運(yùn)行后輸出的值為_(kāi)__________.15.已知定義在上的函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),,若函數(shù)圖象與函數(shù)圖象的交點(diǎn)為,則_____.16.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿(mǎn)足,其中,,則的值為_(kāi)______________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)記拋物線(xiàn)的焦點(diǎn)為,點(diǎn)在拋物線(xiàn)上,且直線(xiàn)的斜率為1,當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí),.(1)求拋物線(xiàn)的方程;(2)若,直線(xiàn)與交于點(diǎn),,求直線(xiàn)的斜率.18.(12分)已知橢圓()經(jīng)過(guò)點(diǎn),離心率為,、、為橢圓上不同的三點(diǎn),且滿(mǎn)足,為坐標(biāo)原點(diǎn).(1)若直線(xiàn)、的斜率都存在,求證:為定值;(2)求的取值范圍.19.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.(1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.20.(12分)已知拋物線(xiàn)的焦點(diǎn)為,點(diǎn)在拋物線(xiàn)上,,直線(xiàn)過(guò)點(diǎn),且與拋物線(xiàn)交于,兩點(diǎn).(1)求拋物線(xiàn)的方程及點(diǎn)的坐標(biāo);(2)求的最大值.21.(12分)已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長(zhǎng)為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線(xiàn)上的點(diǎn),且.證明:直線(xiàn)與圓相切;求面積的最小值.22.(10分)已知集合,,,將的所有子集任意排列,得到一個(gè)有序集合組,其中.記集合中元素的個(gè)數(shù)為,,,規(guī)定空集中元素的個(gè)數(shù)為.當(dāng)時(shí),求的值;利用數(shù)學(xué)歸納法證明:不論為何值,總存在有序集合組,滿(mǎn)足任意,,都有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以二?xiàng)式的展開(kāi)式的通項(xiàng)公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開(kāi)式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力2、D【解析】
根據(jù)正弦定理得到,化簡(jiǎn)得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點(diǎn)睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計(jì)算能力.3、B【解析】
化簡(jiǎn)得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點(diǎn)睛】本題考查了根據(jù)復(fù)數(shù)類(lèi)型求參數(shù),意在考查學(xué)生的計(jì)算能力.4、D【解析】
先計(jì)算,然后將進(jìn)行平方,,可得結(jié)果.【詳解】由題意可得:∴∴則.故選:D.【點(diǎn)睛】本題考查的是向量的數(shù)量積的運(yùn)算和模的計(jì)算,屬基礎(chǔ)題。5、A【解析】
求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【詳解】因?yàn)椋士傻?,令,因?yàn)?,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.6、C【解析】
由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.7、A【解析】
因?yàn)?,可得,根?jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】,,.故選:A.【點(diǎn)睛】本題主要考查了求等差數(shù)列前項(xiàng)和,解題關(guān)鍵是掌握等差中項(xiàng)定義和等差數(shù)列前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.8、A【解析】
若過(guò)點(diǎn)且傾斜角為的直線(xiàn)與雙曲線(xiàn)的右支有且只有一個(gè)交點(diǎn),則該直線(xiàn)的斜率的絕對(duì)值小于等于漸近線(xiàn)的斜率.根據(jù)這個(gè)結(jié)論可以求出雙曲線(xiàn)離心率的取值范圍.【詳解】已知雙曲線(xiàn)的右焦點(diǎn)為,若過(guò)點(diǎn)且傾斜角為的直線(xiàn)與雙曲線(xiàn)的右支有且只有一個(gè)交點(diǎn),則該直線(xiàn)的斜率的絕對(duì)值小于等于漸近線(xiàn)的斜率,,離心率,,故選:.【點(diǎn)睛】本題考查雙曲線(xiàn)的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件.9、D【解析】
利用直線(xiàn)與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線(xiàn)與圓相交,則,解得.因此,所求概率為.故選:D.【點(diǎn)睛】本題考查幾何概型概率的計(jì)算,同時(shí)也考查了利用直線(xiàn)與圓相交求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.10、A【解析】
由圓心到漸近線(xiàn)的距離等于半徑列方程求解即可.【詳解】雙曲線(xiàn)的漸近線(xiàn)方程為y=±22x,圓心坐標(biāo)為(3,0).由題意知,圓心到漸近線(xiàn)的距離等于圓的半徑r,即r=±答案:A【點(diǎn)睛】本題考查了雙曲線(xiàn)的漸近線(xiàn)方程及直線(xiàn)與圓的位置關(guān)系,屬于基礎(chǔ)題.11、C【解析】
對(duì)a進(jìn)行分類(lèi)討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時(shí),,所以,,所以;當(dāng)時(shí),,所以,,所以.綜上,或,故選C.【點(diǎn)睛】本題主要考查指數(shù)函數(shù)的值域問(wèn)題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運(yùn)算和數(shù)學(xué)抽象的核心素養(yǎng).12、D【解析】
先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡(jiǎn)單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)導(dǎo)數(shù)的幾何意義求出切線(xiàn)的斜率,利用點(diǎn)斜式求切線(xiàn)方程.【詳解】因?yàn)?,所以,又故切線(xiàn)方程為,整理為,故答案為:【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線(xiàn)方程,屬于容易題.14、13【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿(mǎn)足條件,故得到此時(shí)輸出的b值為13.故答案為13.15、4038.【解析】
由函數(shù)圖象的對(duì)稱(chēng)性得:函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),則,,即,得解.【詳解】由知:得函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)又函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)則函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng)則故,即本題正確結(jié)果:【點(diǎn)睛】本題考查利用函數(shù)圖象的對(duì)稱(chēng)性來(lái)求值的問(wèn)題,關(guān)鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對(duì)稱(chēng)中心,屬中檔題.16、【解析】
根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),可得,所以.②根據(jù)①②得出,.所以.故答案為.【點(diǎn)睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)0【解析】
(1)根據(jù)題意,設(shè)直線(xiàn),與聯(lián)立,得,再由弦長(zhǎng)公式,求解.(2)設(shè),根據(jù)直線(xiàn)的斜率為1,則,得到,再由,所以線(xiàn)段中點(diǎn)的縱坐標(biāo)為,然后直線(xiàn)的方程與直線(xiàn)的方程聯(lián)立解得交點(diǎn)H的縱坐標(biāo),說(shuō)明直線(xiàn)軸,直線(xiàn)的斜率為0.【詳解】(1)依題意,,則直線(xiàn),聯(lián)立得;設(shè),則,解得,故拋物線(xiàn)的方程為.(2),因?yàn)橹本€(xiàn)的斜率為1,則,所以,因?yàn)?,所以線(xiàn)段中點(diǎn)的縱坐標(biāo)為.直線(xiàn)的方程為,即①直線(xiàn)的方程為,即②聯(lián)立①②解得即點(diǎn)的縱坐標(biāo)為,即直線(xiàn)軸,故直線(xiàn)的斜率為0.如果直線(xiàn)的斜率不存在,結(jié)論也顯然成立,綜上所述,直線(xiàn)的斜率為0.【點(diǎn)睛】本題考查拋物線(xiàn)的方程、直線(xiàn)與拋物線(xiàn)的位置關(guān)系,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.18、(1)證明見(jiàn)解析;(2).【解析】
(1)首先根據(jù)題中條件求出橢圓方程,設(shè)、、點(diǎn)坐標(biāo),根據(jù)利用坐標(biāo)表示出即可得證;(2)設(shè)直線(xiàn)方程,再與橢圓方程聯(lián)立利用韋達(dá)定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設(shè),,,由為的重心,;又因?yàn)?,,,,?)當(dāng)?shù)男甭什淮嬖跁r(shí):,,,代入橢圓得,,,當(dāng)?shù)男甭蚀嬖跁r(shí):設(shè)直線(xiàn)為,這里,由,,根據(jù)韋達(dá)定理有,,,故,代入橢圓方程有,又因?yàn)?,綜上,的范圍是.【點(diǎn)睛】本題主要考查了橢圓方程的求解,三角形重心的坐標(biāo)關(guān)系,直線(xiàn)與橢圓所交弦長(zhǎng),屬于一般題.19、(1)見(jiàn)詳解;(2).【解析】
(1)因?yàn)檎奂埡驼澈喜桓淖兙匦?,和菱形?nèi)部的夾角,所以,依然成立,又因和粘在一起,所以得證.因?yàn)槭瞧矫娲咕€(xiàn),所以易證.(2)在圖中找到對(duì)應(yīng)的平面角,再求此平面角即可.于是考慮關(guān)于的垂線(xiàn),發(fā)現(xiàn)此垂足與的連線(xiàn)也垂直于.按照此思路即證.【詳解】(1)證:,,又因?yàn)楹驼吃谝黄?,A,C,G,D四點(diǎn)共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過(guò)B作延長(zhǎng)線(xiàn)于H,連結(jié)AH,因?yàn)锳B平面BCGE,所以而又,故平面,所以.又因?yàn)樗允嵌娼堑钠矫娼?,而在中,又因?yàn)楣剩?而在中,,即二面角的度數(shù)為.【點(diǎn)睛】很新穎的立體幾何考題.首先是多面體粘合問(wèn)題,考查考生在粘合過(guò)程中哪些量是不變的.再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法.最后將求二面角轉(zhuǎn)化為求二面角的平面角問(wèn)題考查考生的空間想象能力.20、(1),;(2)1.【解析】
(1)根據(jù)拋物線(xiàn)上的點(diǎn)到焦點(diǎn)和準(zhǔn)線(xiàn)的距離相等,可得p值,即可求拋物線(xiàn)C的方程從而可得解;(2)設(shè)直線(xiàn)l的方程為:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,設(shè)A(x1,y1),B(x2,y2),則y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【詳解】(1)∵點(diǎn)F是拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),P(2,y0)是拋物線(xiàn)上一點(diǎn),|PF|=3,∴23,解得:p=2,∴拋物線(xiàn)C的方程為y2=4x,∵點(diǎn)P(2,n)(n>0)在拋物線(xiàn)C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴設(shè)直線(xiàn)l的方程為:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0設(shè)A(x1,y1),B(x2,y2),則y1,y2是y2+4my﹣4=0的兩個(gè)不同實(shí)根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴當(dāng)m時(shí),取最大值1.【點(diǎn)睛】本題考查拋物線(xiàn)方程的求法,考查向量的數(shù)量積的最大值的求法,考查拋物線(xiàn)、直線(xiàn)方程、韋達(dá)定理等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,是中檔題.21、證明見(jiàn)解析;1.【解析】
由題意可得橢圓的方程為,由點(diǎn)在直線(xiàn)上,且知的斜率必定存在,分類(lèi)討論當(dāng)?shù)男甭蕿闀r(shí)和斜率不為時(shí)的情況列出相應(yīng)式子,即可得出直線(xiàn)與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點(diǎn)在軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線(xiàn)上,且知的斜率必定存在,當(dāng)?shù)男甭蕿闀r(shí),,,于是,到的距離為,直線(xiàn)與圓相切.當(dāng)?shù)男甭什粸闀r(shí),設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時(shí),到的距離為,直線(xiàn)與圓相切.綜上,直線(xiàn)與圓相切.由知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍?hào)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 焊接課程設(shè)計(jì)計(jì)算
- 美術(shù)單元課程設(shè)計(jì)幼兒園
- 有關(guān)于幼兒課程設(shè)計(jì)
- 中考英語(yǔ)作文范文共50篇
- 《經(jīng)濟(jì)危機(jī)與》課件
- 軟件開(kāi)發(fā)管理制度
- 智能創(chuàng)業(yè)課程設(shè)計(jì)
- 金融行業(yè)保安工作的總結(jié)與優(yōu)化計(jì)劃
- 流利閱讀課程設(shè)計(jì)
- 水上樂(lè)園前臺(tái)接待總結(jié)
- 廣東省廣州市2023-2024高二上學(xué)期期末語(yǔ)文試題
- 新疆大學(xué)答辯模板課件模板
- 2024年土石方工程合同模板(三篇)
- 云南2025年中國(guó)工商銀行云南分行秋季校園招聘650人筆試歷年參考題庫(kù)解題思路附帶答案詳解
- 中級(jí)水工閘門(mén)運(yùn)行工技能鑒定理論考試題及答案
- 2024年蘭州市城關(guān)區(qū)四年級(jí)數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析
- 奮躍而上 飛速奔跑(2023年黑龍江牡丹江中考語(yǔ)文試卷議論文閱讀題及答案)
- 記賬實(shí)操-足浴店賬務(wù)處理分錄
- 九一八《勿忘國(guó)恥吾輩當(dāng)自強(qiáng)》教案
- 2024年離婚協(xié)議書(shū)簡(jiǎn)單離婚協(xié)議書(shū)
- 2024年新北師大版一年級(jí)上冊(cè)數(shù)學(xué)教學(xué)課件 總復(fù)習(xí)(1) 數(shù)與代數(shù)
評(píng)論
0/150
提交評(píng)論