版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省牡丹江市2024屆中考聯(lián)考數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.目前,世界上能制造出的最小晶體管的長度只有0.00000004m,將0.00000004用科學(xué)記數(shù)法表示為()A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×1082.如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.3.如圖,在中,、分別為、邊上的點,,與相交于點,則下列結(jié)論一定正確的是()A. B.C. D.4.若|a|=﹣a,則a為()A.a(chǎn)是負數(shù) B.a(chǎn)是正數(shù) C.a(chǎn)=0 D.負數(shù)或零5.若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()A.有最大值 B.有最大值 C.有最小值 D.有最小值6.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm7.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動點(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形8.甲隊修路120m與乙隊修路100m所用天數(shù)相同,已知甲隊比乙隊每天多修10m,設(shè)甲隊每天修路xm.依題意,下面所列方程正確的是A.B. C.D.9.某廠接到加工720件衣服的訂單,預(yù)計每天做48件,正好按時完成,后因客戶要求提前5天交貨,設(shè)每天應(yīng)多做x件才能按時交貨,則x應(yīng)滿足的方程為()A. B.C. D.10.如圖,在菱形ABCD中,AB=BD,點E,F(xiàn)分別在AB,AD上,且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF,其中正確的結(jié)論A.只有①②. B.只有①③. C.只有②③. D.①②③.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后得到△COD,若∠AOB=15°,則∠AOD=_____度.12.如圖,點、、在直線上,點,,在直線上,以它們?yōu)轫旤c依次構(gòu)造第一個正方形,第二個正方形,若的橫坐標(biāo)是1,則的坐標(biāo)是______,第n個正方形的面積是______.13.已知關(guān)于的一元二次方程的兩個實數(shù)根分別是x=-2,x=4,則的值為________.14.一個不透明的口袋中有2個紅球,1個黃球,1個白球,每個球除顏色不同外其余均相同.小溪同學(xué)從口袋中隨機取出兩個小球,則小溪同學(xué)取出的是一個紅球、一個白球的概率為_____.15.如圖,AB是⊙O的直徑,且經(jīng)過弦CD的中點H,過CD延長線上一點E作⊙O的切線,切點為F.若∠ACF=65°,則∠E=.16.關(guān)于x的方程kx2﹣(2k+1)x+k+2=0有實數(shù)根,則k的取值范圍是_____.17.關(guān)于的一元二次方程有兩個相等的實數(shù)根,則________.三、解答題(共7小題,滿分69分)18.(10分)如圖,四邊形AOBC是正方形,點C的坐標(biāo)是(4,0).正方形AOBC的邊長為,點A的坐標(biāo)是.將正方形AOBC繞點O順時針旋轉(zhuǎn)45°,點A,B,C旋轉(zhuǎn)后的對應(yīng)點為A′,B′,C′,求點A′的坐標(biāo)及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;動點P從點O出發(fā),沿折線OACB方向以1個單位/秒的速度勻速運動,同時,另一動點Q從點O出發(fā),沿折線OBCA方向以2個單位/秒的速度勻速運動,運動時間為t秒,當(dāng)它們相遇時同時停止運動,當(dāng)△OPQ為等腰三角形時,求出t的值(直接寫出結(jié)果即可).19.(5分)某校要求八年級同學(xué)在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓(xùn)練,為了了解八年級學(xué)生參加球類活動的整體情況,現(xiàn)以八年級(2)班作為樣本,對該班學(xué)生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:八年級(2)班參加球類活動人數(shù)情況統(tǒng)計表項目籃球足球乒乓球排球羽毛球人數(shù)a6576八年級(2)班學(xué)生參加球類活動人數(shù)情況扇形統(tǒng)計圖根據(jù)圖中提供的信息,解答下列問題:a=,b=.該校八年級學(xué)生共有600人,則該年級參加足球活動的人數(shù)約人;該班參加乒乓球活動的5位同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.20.(8分)在?ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.(1)求證:四邊形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.21.(10分)如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結(jié)論.22.(10分)如圖,直線y=12x與雙曲線y=kx(k>0,x>0)交于點A,將直線y=12(1)設(shè)點B的橫坐標(biāo)分別為b,試用只含有字母b的代數(shù)式表示k;(2)若OA=3BC,求k的值.23.(12分)如圖所示,已知,試判斷與的大小關(guān)系,并說明理由.24.(14分)如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);(3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
科學(xué)記數(shù)法的表示形式為a×10的形式,其中1≤a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】0.00000004=4×10,故選C【點睛】此題考查科學(xué)記數(shù)法,難度不大2、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點睛】本題考查的是二次函數(shù)的綜合運用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.3、A【解析】
根據(jù)平行線分線段成比例定理逐項分析即可.【詳解】A.∵,∴,,∴,故A正確;B.∵,∴,故B不正確;C.∵,∴,故C不正確;D.∵,∴,故D不正確;故選A.【點睛】本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對應(yīng)線段的長度成比例.推論:平行于三角形一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.4、D【解析】
根據(jù)絕對值的性質(zhì)解答.【詳解】解:當(dāng)a≤0時,|a|=-a,∴|a|=-a時,a為負數(shù)或零,故選D.【點睛】本題考查的是絕對值的性質(zhì),①當(dāng)a是正有理數(shù)時,a的絕對值是它本身a;②當(dāng)a是負有理數(shù)時,a的絕對值是它的相反數(shù)-a;③當(dāng)a是零時,a的絕對值是零.5、B【解析】
解:∵一次函數(shù)y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數(shù)有最大值,∴最大值為,故選B.6、C【解析】
連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關(guān)于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關(guān)于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.7、D【解析】
連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等邊三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故A正確;
∵∠EDF=60°,
∴△EDF是等邊三角形,
∴C正確;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故B正確.
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF.
故D錯誤.
故選D.【點睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.8、A【解析】分析:甲隊每天修路xm,則乙隊每天修(x-10)m,因為甲、乙兩隊所用的天數(shù)相同,所以,。故選A。9、D【解析】
因客戶的要求每天的工作效率應(yīng)該為:(48+x)件,所用的時間為:,根據(jù)“因客戶要求提前5天交貨”,用原有完成時間減去提前完成時間,可以列出方程:.故選D.10、D【解析】
解:①∵ABCD為菱形,∴AB=AD.∵AB=BD,∴△ABD為等邊三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.過點C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,則△CBM≌△CDN,(HL)∴S四邊形BCDG=S四邊形CMGN.S四邊形CMGN=1S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四邊形CMGN=1S△CMG=1××CG×CG=CG1.③過點F作FP∥AE于P點.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、30°【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BOD=45°,再用∠BOD減去∠AOB即可.【詳解】∵將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案為30°.12、(4,2),【解析】
由的橫坐標(biāo)是1,可得,利用兩個函數(shù)解析式求出點、的坐標(biāo),得出的長度以及第1個正方形的面積,求出的坐標(biāo);然后再求出的坐標(biāo),得出第2個正方形的面積,求出的坐標(biāo);再求出、的坐標(biāo),得出第3個正方形的面積;從而得出規(guī)律即可得到第n個正方形的面積.【詳解】解:點、、在直線上,的橫坐標(biāo)是1,
,
點,,在直線上,
,,
,,
第1個正方形的面積為:;
,
,,,
第2個正方形的面積為:;
,
,,
第3個正方形的面積為:;
,
第n個正方形的面積為:.
故答案為,.【點睛】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征,正方形的性質(zhì)以及規(guī)律型中圖形的變化規(guī)律,解題的關(guān)鍵是找出規(guī)律本題難度適中,解決該題型題目時,根據(jù)給定的條件求出第1、2、3個正方形的邊長,根據(jù)數(shù)據(jù)的變化找出變化規(guī)律是關(guān)鍵.13、-10【解析】
根據(jù)根與系數(shù)的關(guān)系得出-2+4=-m,-2×4=n,求出即可.【詳解】∵關(guān)于x的一元二次方程的兩個實數(shù)根分別為x=-2,x=4,∴?2+4=?m,?2×4=n,解得:m=?2,n=?8,∴m+n=?10,故答案為:-10【點睛】此題考查根與系數(shù)的關(guān)系,掌握運算法則是解題關(guān)鍵14、【解析】
先畫樹狀圖求出所有等可能的結(jié)果數(shù),再找出從口袋中隨機摸出2個球,摸到的兩個球是一紅一白的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:根據(jù)題意畫樹狀圖如下:共有12種等可能的結(jié)果數(shù),其中從口袋中隨機摸出2個球,摸到的一個紅球、一個白球的結(jié)果數(shù)為4,所以從口袋中隨機摸出2個球,則摸到的兩個球是一白一黃的概率為.故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、50°.【解析】
解:連接DF,連接AF交CE于G,∵EF為⊙O的切線,∴∠OFE=90°,∵AB為直徑,H為CD的中點∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案為:50°.16、k≤.【解析】
分k=1及k≠1兩種情況考慮:當(dāng)k=1時,通過解一元一次方程可得出原方程有解,即k=1符合題意;等k≠1時,由△≥1即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.綜上此題得解.【詳解】當(dāng)k=1時,原方程為-x+2=1,解得:x=2,∴k=1符合題意;當(dāng)k≠1時,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.綜上:k的取值范圍是k≤.故答案為:k≤.【點睛】本題考查了根的判別式以及一元二次方程的定義,分k=1及k≠1兩種情況考慮是解題的關(guān)鍵.17、-1.【解析】
根據(jù)根的判別式計算即可.【詳解】解:依題意得:∵關(guān)于的一元二次方程有兩個相等的實數(shù)根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【點睛】本題考查了一元二次方程根的判別式,當(dāng)=>0時,方程有兩個不相等的實數(shù)根;當(dāng)==0時,方程有兩個相等的實數(shù)根;當(dāng)=<0時,方程無實數(shù)根.三、解答題(共7小題,滿分69分)18、(1)4,;(2)旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積為;(3).【解析】
(1)連接AB,根據(jù)△OCA為等腰三角形可得AD=OD的長,從而得出點A的坐標(biāo),則得出正方形AOBC的面積;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得OA′的長,從而得出A′C,A′E,再求出面積即可;
(3)根據(jù)P、Q點在不同的線段上運動情況,可分為三種列式①當(dāng)點P、Q分別在OA、OB時,②當(dāng)點P在OA上,點Q在BC上時,③當(dāng)點P、Q在AC上時,可方程得出t.【詳解】解:(1)連接AB,與OC交于點D,四邊形是正方形,
∴△OCA為等腰Rt△,∴AD=OD=OC=2,
∴點A的坐標(biāo)為.4,.(2)如圖∵四邊形是正方形,∴,.∵將正方形繞點順時針旋轉(zhuǎn),∴點落在軸上.∴.∴點的坐標(biāo)為.∵,∴.∵四邊形,是正方形,∴,.∴,.∴.∴.∵,,∴.∴旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積為.(3)設(shè)t秒后兩點相遇,3t=16,∴t=①當(dāng)點P、Q分別在OA、OB時,∵,OP=t,OQ=2t∴不能為等腰三角形②當(dāng)點P在OA上,點Q在BC上時如圖2,當(dāng)OQ=QP,QM為OP的垂直平分線,
OP=2OM=2BQ,OP=t,BQ=2t-4,
t=2(2t-4),
解得:t=.③當(dāng)點P、Q在AC上時,不能為等腰三角形綜上所述,當(dāng)時是等腰三角形【點睛】此題考查了正方形的性質(zhì),等腰三角形的判定以及旋轉(zhuǎn)的性質(zhì),是中考壓軸題,綜合性較強,難度較大.19、(1)a=16,b=17.5(2)90(3)【解析】試題分析:(1)首先求得總?cè)藬?shù),然后根據(jù)百分比的定義求解;(2)利用總數(shù)乘以對應(yīng)的百分比即可求解;(3)利用列舉法,根據(jù)概率公式即可求解.試題解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案為16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案為90;(3)如圖,∵共有20種等可能的結(jié)果,兩名主持人恰為一男一女的有12種情況,∴則P(恰好選到一男一女)==.考點:列表法與樹狀圖法;用樣本估計總體;扇形統(tǒng)計圖.20、(1)證明見解析(2)【解析】分析:(1)由已知條件易得BE=DF且BE∥DF,從而可得四邊BFDE是平行四邊形,結(jié)合∠EDB=90°即可得到四邊形BFDE是矩形;(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,結(jié)合BE=DF可得BE=5,由此可得AB=8,結(jié)合BF=DE=4即可求得tan∠BAF=.詳解:(1)∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)在Rt△BCF中,由勾股定理,得AD=,∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.∵AF平分∠DAB∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DF=AD=5,∵四邊形BFDE是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴tan∠BAF=.點睛:(1)熟悉平行四邊形的性質(zhì)和矩形的判定方法是解答第1小題的關(guān)鍵;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,進而推得DF=AD=5是解答第2小題的關(guān)鍵.21、(1)詳見解析;(2)平行四邊形.【解析】
(1)由“三線合一”定理即可得到結(jié)論;
(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根據(jù)垂直平分線的性質(zhì)有AB=BE,于是AD=BE,進而得到AD=EC,根據(jù)平行四邊形的判定即可得到結(jié)論.【詳解】證明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四邊形,證明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四邊形AECD是平行四邊形.【點睛】考查等腰直角三角形的性質(zhì)以及平行四邊形的判定,掌握平行四邊形的判定方法是解題的關(guān)鍵.22、(1)k=12b2+4b;(2)9【解析】試題分析:(1)分別求出點B的坐標(biāo),即可解答.(2)先根據(jù)一次函數(shù)平移的性質(zhì)求出平移后函數(shù)的解析式,再分別過點A、B作AD⊥x軸,BE⊥x軸,CF⊥BE于點F,再設(shè)A(3x,32x),由于OA=3BC,故可得出B(x,1試題解析:(1)∵將直線y=12∴平移后直線的解析式為y=12∵點B在直線y=12∴B(b,12∵點B在雙曲線y=kx∴B(b,kb令12b+4=得k=(2)分別過點A、B作AD⊥x軸,BE⊥x軸,CF⊥BE于點F,設(shè)A(3x,32∵OA=3BC,BC∥OA,CF∥x軸,∴CF=13∵點A、B在雙曲線y=kx∴3b?32b=1∴k=3×1×32×1=9考點:反比例函數(shù)綜合題.23、.【解析】
首先判斷∠AED與∠ACB是一對同位角,然后根據(jù)已知條件推出DE∥BC,得出兩角相等.【詳解】解:∠AED=∠ACB.理由:如圖,分別標(biāo)記∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定義),∠1+∠2=180°(已知).
∴∠2=∠1.
∴EF∥AB(內(nèi)錯角相等,兩直線平行).
∴∠3=∠ADE(兩直線平行,內(nèi)錯角相等).
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代換).
∴DE∥BC(同位角相等,兩直線平行).
∴∠AED=∠ACB(兩直線平行,同位角相等).【點睛】本題重點考查平行線的性質(zhì)和判定,難度適中.24、(1)拋物線的解析式為y=x2-2x+1,(2)四邊形AE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年第八章合同擔(dān)保在電子商務(wù)交易保障中的應(yīng)用3篇
- 2024年電子商務(wù)市場調(diào)研與競爭分析服務(wù)合同2篇
- 2024年度國際貿(mào)易出口合同訂立流程與風(fēng)險控制指南3篇
- 2024年度財務(wù)風(fēng)險防范及內(nèi)部控制建設(shè)合同3篇
- 2024年度研發(fā)與外包合同3篇
- 2024版二手車回收與再制造合同樣本2篇
- 2024版出租車公司股權(quán)轉(zhuǎn)讓與乘客安全保障系統(tǒng)建設(shè)合同3篇
- 2024版農(nóng)業(yè)科技示范園堰塘承包與技術(shù)創(chuàng)新合同3篇
- 2024年度藝術(shù)品買賣及授權(quán)合同5篇
- 2024版懸疑科幻電影拍攝合同2篇
- 2024-淘寶商城入駐協(xié)議標(biāo)準(zhǔn)版
- 中國青少年籃球訓(xùn)練教學(xué)大綱-姚維
- 長方體的表面積說課市公開課一等獎省賽課微課金獎?wù)n件
- 中國石油天然氣集團有限公司投標(biāo)人失信行為管理辦法(試行)
- 中醫(yī)藥與中華傳統(tǒng)文化智慧樹知到期末考試答案2024年
- 產(chǎn)品質(zhì)量保證函模板
- 模板支撐腳手架集中線荷載、施工總荷載計算表(修正)
- GB/T 43700-2024滑雪場所的運行和管理規(guī)范
- 新媒體部門崗位配置人員架構(gòu)圖
- 水電站廠房設(shè)計-畢業(yè)設(shè)計
- 綜合金融服務(wù)方案課件
評論
0/150
提交評論