湖南株洲市景炎校2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第1頁
湖南株洲市景炎校2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第2頁
湖南株洲市景炎校2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第3頁
湖南株洲市景炎校2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第4頁
湖南株洲市景炎校2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南株洲市景炎校2023-2024學(xué)年中考數(shù)學(xué)模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運(yùn)算正確的是()A.a(chǎn)4+a2=a4 B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2 D.b6÷b2=b32.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m3.某居委會組織兩個檢查組,分別對“垃圾分類”和“違規(guī)停車”的情況進(jìn)行抽查.各組隨機(jī)抽取轄區(qū)內(nèi)某三個小區(qū)中的一個進(jìn)行檢查,則兩個組恰好抽到同一個小區(qū)的概率是()A. B. C. D.4.計算3–(–9)的結(jié)果是()A.12 B.–12 C.6 D.–65.如下圖所示,該幾何體的俯視圖是()A. B. C. D.6.上體育課時,小明5次投擲實心球的成績?nèi)缦卤硭?,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()12345成績(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.07.如圖,直線AB∥CD,則下列結(jié)論正確的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°8.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.109.計算的結(jié)果是()A.a(chǎn)2 B.-a2 C.a(chǎn)4 D.-a410.下列計算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a6二、填空題(共7小題,每小題3分,滿分21分)11.2017年端午小長假的第一天,永州市共接待旅客約275000人次,請將275000用科學(xué)記數(shù)法表示為___________________.12.函數(shù)的自變量的取值范圍是.13.如圖,菱形ABCD的邊長為15,sin∠BAC=3514.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形15.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為_____.16.若有意義,則x的取值范圍是.17.函數(shù)y=中,自變量x的取值范圍是________.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線交X軸于A、B兩點,交Y軸于點C,.(1)求拋物線的解析式;(2)平面內(nèi)是否存在一點P,使以A,B,C,P為頂點的四邊形為平行四邊形,若存在直接寫出P的坐標(biāo),若不存在請說明理由。19.(5分)經(jīng)過江漢平原的滬蓉(上海﹣成都)高速鐵路即將動工.工程需要測量漢江某一段的寬度.如圖①,一測量員在江岸邊的A處測得對岸岸邊的一根標(biāo)桿B在它的正北方向,測量員從A點開始沿岸邊向正東方向前進(jìn)100米到達(dá)點C處,測得∠ACB=68°.(1)求所測之處江的寬度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的測量方案外,請你再設(shè)計一種測量江寬的方案,并在圖②中畫出圖形.(不用考慮計算問題,敘述清楚即可)20.(8分)閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發(fā)現(xiàn);借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).21.(10分)P是外一點,若射線PC交于點A,B兩點,則給出如下定義:若,則點P為的“特征點”.當(dāng)?shù)陌霃綖?時.在點、、中,的“特征點”是______;點P在直線上,若點P為的“特征點”求b的取值范圍;的圓心在x軸上,半徑為1,直線與x軸,y軸分別交于點M,N,若線段MN上的所有點都不是的“特征點”,直接寫出點C的橫坐標(biāo)的取值范圍.22.(10分)(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:成績分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計■1(1)寫出a,b,c的值;(2)請估計這1000名學(xué)生中有多少人的競賽成績不低于70分;(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識宣傳活動,求所抽取的2名同學(xué)來自同一組的概率.23.(12分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);(2)若這個輸水管道有水部分的水面寬AB=8cm,水面最深地方的高度為2cm,求這個圓形截面的半徑.24.(14分)如圖,M是平行四邊形ABCD的對角線上的一點,射線AM與BC交于點F,與DC的延長線交于點H.(1)求證:AM2=MF.MH(2)若BC2=BD.DM,求證:∠AMB=∠ADC.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:根據(jù)合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質(zhì),逐一計算判斷即可.詳解:根據(jù)同類項的定義,可知a4與a2不是同類項,不能計算,故不正確;根據(jù)積的乘方,等于個個因式分別乘方,可得(x2y)3=x6y3,故正確;根據(jù)完全平方公式,可得(m-n)2=m2-2mn+n2,故不正確;根據(jù)同底數(shù)冪的除法,可知b6÷b2=b4,不正確.故選B.點睛:此題主要考查了合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質(zhì),熟記并靈活運(yùn)用是解題關(guān)鍵.2、C【解析】

如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結(jié)論.【詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【點睛】本題考查了解直角三角形的應(yīng)用.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學(xué)模型,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.3、C【解析】分析:將三個小區(qū)分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.詳解:將三個小區(qū)分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結(jié)果,其中兩個組恰好抽到同一個小區(qū)的結(jié)果有3種,所以兩個組恰好抽到同一個小區(qū)的概率為.故選:C.點睛:此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、A【解析】

根據(jù)有理數(shù)的減法,即可解答.【詳解】故選A.【點睛】本題考查了有理數(shù)的減法,解決本題的關(guān)鍵是熟記減去一個數(shù)等于加上這個數(shù)的相反數(shù).5、B【解析】

根據(jù)俯視圖是從上面看到的圖形解答即可.【詳解】從上面看是三個長方形,故B是該幾何體的俯視圖.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.6、D【解析】

解:按從小到大的順序排列小明5次投球的成績:7.5,7.8,8.2,8.1,8.1.其中8.1出現(xiàn)1次,出現(xiàn)次數(shù)最多,8.2排在第三,∴這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是:8.1,8.2.故選D.【點睛】本題考查眾數(shù);中位數(shù).7、D【解析】分析:依據(jù)AB∥CD,可得∠3+∠5=180°,再根據(jù)∠5=∠4,即可得出∠3+∠4=180°.詳解:如圖,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故選D.點睛:本題考查了平行線的性質(zhì),解題時注意:兩直線平行,同旁內(nèi)角互補(bǔ).8、D【解析】

過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質(zhì)得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:

過B作BN⊥AC于N,BM⊥AD于M,

∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,

∴∠C′AB=∠CAB,

∴BN=BM,

∵△ABC的面積等于12,邊AC=3,

∴×AC×BN=12,

∴BN=8,

∴BM=8,

即點B到AD的最短距離是8,

∴BP的長不小于8,

即只有選項D符合,

故選D.【點睛】本題考查的知識點是折疊的性質(zhì),三角形的面積,角平分線性質(zhì)的應(yīng)用,解題關(guān)鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.9、D【解析】

直接利用同底數(shù)冪的乘法運(yùn)算法則計算得出答案.【詳解】解:,故選D.【點睛】此題主要考查了同底數(shù)冪的乘法運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.10、D【解析】各項計算得到結(jié)果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D二、填空題(共7小題,每小題3分,滿分21分)11、1.75×2【解析】試題解析:175000=1.75×2.考點:科學(xué)計數(shù)法----表示較大的數(shù)12、x≠1【解析】該題考查分式方程的有關(guān)概念根據(jù)分式的分母不為0可得X-1≠0,即x≠1那么函數(shù)y=的自變量的取值范圍是x≠113、24【解析】試題分析:因為四邊形ABCD是菱形,根據(jù)菱形的性質(zhì)可知,BD與AC互相垂直且平分,因為sin∠BAC=35,AB=10,所以1考點:三角函數(shù)、菱形的性質(zhì)及勾股定理;14、B【解析】

根據(jù)平行四邊形的判定與矩形的判定定理,即可求得答案.【詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.【點睛】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關(guān)鍵是熟記定理.15、1【解析】

作AB的中點E,連接EM、CE,根據(jù)直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據(jù)三邊關(guān)系即可求解.【詳解】作AB的中點E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點,∴CE=AB=5,∵M(jìn)是BD的中點,E是AB的中點,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【點睛】本題考查了點與圓的位置關(guān)系、三角形的中位線定理的知識,要結(jié)合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.16、x≥8【解析】略17、x≤1【解析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負(fù)數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負(fù)數(shù)是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1);(2)(3,-4)或(5,4)或(-5,4)【解析】

(1)設(shè)|OA|=1,確定A,B,C三點坐標(biāo),然后用待定系數(shù)法即可完成;(2)先畫出存在的點,然后通過平移和計算確定坐標(biāo);【詳解】解:(1)設(shè)|OA|=1,則A(-1,0),B(4,0)C(0,4)設(shè)拋物線的解析式為y=ax2+bx+c則有:解得所以函數(shù)解析式為:(2)存在,(3,-4)或(5,4)或(-5,4)理由如下:如圖:P1相當(dāng)于C點向右平移了5個單位長度,則坐標(biāo)為(5,4);P2相當(dāng)于C點向左平移了5個單位長度,則坐標(biāo)為(-5,4);設(shè)P3坐標(biāo)為(m,n)在第四象限,要使AP3BC是平行四邊形,則有AP3=BC,BP3=AC∴即(舍去)P3坐標(biāo)為(3,-4)【點睛】本題主要考查了二次函數(shù)綜合題,此題涉及到待定系數(shù)法求二次函數(shù)解析式,通過作圖確認(rèn)平行四邊形存在,然后通過觀察和計算確定P點坐標(biāo);解題的關(guān)鍵在于規(guī)范作圖,以便于樹形結(jié)合.19、(1)21米(2)見解析【解析】試題分析:(1)根據(jù)題意易發(fā)現(xiàn),直角三角形ABC中,已知AC的長度,又知道了∠ACB的度數(shù),那么AB的長就不難求出了.(2)從所畫出的圖形中可以看出是利用三角形全等、三角形相似、解直角三角形的知識來解決問題的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC?tan68°≈100×2.1=21(米)答:所測之處江的寬度約為21米.(2)①延長BA至C,測得AC做記錄;②從C沿平行于河岸的方向走到D,測得CD,做記錄;③測AE,做記錄.根據(jù)△BAE∽△BCD,得到比例線段,從而解答20、(1)證明見解析;(2)證明見解析;(3)∠EAF=m°.【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明△DAB≌△EAC即可;(2)如圖2中,延長DC到E,使得DB=DE.首先證明△BDE是等邊三角形,再證明△ABD≌△CBE即可解決問題;(3)如圖3中,將AE繞點E逆時針旋轉(zhuǎn)m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.想辦法證明△AFE≌△AFG,可得∠EAF=∠FAG=m°.詳(1)證明:如圖1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)證明:如圖2中,延長DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等邊三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如圖3中,將AE繞點E逆時針旋轉(zhuǎn)m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=m°.點睛:本題考查幾何變換綜合題、旋轉(zhuǎn)變換、等腰三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用“手拉手”圖形中的全等三角形解決問題,學(xué)會構(gòu)造“手拉手”模型,解決實際問題,屬于中考壓軸題.21、(1)①、;②(2)或,.【解析】

據(jù)若,則點P為的“特征點”,可得答案;根據(jù)若,則點P為的“特征點”,可得,根據(jù)等腰直角三角形的性質(zhì),可得答案;根據(jù)垂線段最短,可得PC最短,根據(jù)等腰直角三角形的性質(zhì),可得,根據(jù)若,則點P為的“特征點”,可得答案.【詳解】解:,,點是的“特征點”;,,點是的“特征點”;,,點不是的“特征點”;故答案為、如圖1,在上,若存在的“特征點”點P,點O到直線的距離.直線交y軸于點E,過O作直線于點H.因為.在中,可知.可得同理可得.的取值范圍是:如圖2,設(shè)C點坐標(biāo)為,直線,.,,,..,線段MN上的所有點都不是的“特征點”,,即,解得或,點C的橫坐標(biāo)的取值范圍是或,.故答案為:(1)①、;②(2)或,.【點睛】本題考查一次函數(shù)綜合題,解的關(guān)鍵是利用若,則點P為的“特征點”;解的關(guān)鍵是利用等腰直角三角形的性質(zhì)得出OE的長;解的關(guān)鍵是利用等腰直角三角形的性質(zhì)得出,又利用了.22、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【解析】

(1)利用50≤x<60的頻數(shù)和頻率,根據(jù)公式:頻率=頻數(shù)÷總數(shù)先計算出樣本總?cè)藬?shù),再分別計算出a,b,c的值;(2)先計算出競賽分?jǐn)?shù)不低于70分的頻率,根據(jù)樣本估計總體的思想,計算出1000名學(xué)生中競賽成績不低于70分的人數(shù);(3)列樹形圖或列出表格,得到要求的所有情況和2名同學(xué)來自一組的情況,利用求概率公式計算出概率.【詳解】解:(1)樣本人數(shù)為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數(shù)為:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在選取的樣本中,競賽分?jǐn)?shù)不低于70分的頻率是0.5+0.06+0.0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論