云南省麗江市名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
云南省麗江市名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
云南省麗江市名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
云南省麗江市名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
云南省麗江市名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省麗江市名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.方程x(x-2)+x-2=0的兩個(gè)根為()A., B.,C., D.,2.如圖,在?ABCD中,AB=2,BC=1.以點(diǎn)C為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交BC于點(diǎn)P,交CD于點(diǎn)Q,再分別以點(diǎn)P,Q為圓心,大于PQ的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)N,射線CN交BA的延長(zhǎng)線于點(diǎn)E,則AE的長(zhǎng)是()A. B.1 C. D.3.如圖,AB是定長(zhǎng)線段,圓心O是AB的中點(diǎn),AE、BF為切線,E、F為切點(diǎn),滿足AE=BF,在上取動(dòng)點(diǎn)G,國(guó)點(diǎn)G作切線交AE、BF的延長(zhǎng)線于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)4.當(dāng)x=1時(shí),代數(shù)式x3+x+m的值是7,則當(dāng)x=﹣1時(shí),這個(gè)代數(shù)式的值是()A.7 B.3 C.1 D.﹣75.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃6.如圖,一艘海輪位于燈塔P的南偏東70°方向的M處,它以每小時(shí)40海里的速度向正北方向航行,2小時(shí)后到達(dá)位于燈塔P的北偏東40°的N處,則N處與燈塔P的距離為A.40海里 B.60海里 C.70海里 D.80海里7.如圖,點(diǎn)O′在第一象限,⊙O′與x軸相切于H點(diǎn),與y軸相交于A(0,2),B(0,8),則點(diǎn)O′的坐標(biāo)是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)8.如圖,直線AB∥CD,∠A=70°,∠C=40°,則∠E等于()A.30° B.40°C.60° D.70°9.如圖,在中,面積是16,的垂直平分線分別交邊于點(diǎn),若點(diǎn)為邊的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為()A.6 B.8 C.10 D.1210.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點(diǎn)D在BC上,以AC為對(duì)角線的所有□ADCE中,DE的最小值是(

)A.4 B.6 C.8 D.10二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在正方形ABCD中,E是AB上一點(diǎn),BE=2,AE=3BE,P是AC上一動(dòng)點(diǎn),則PB+PE的最小值是.12.函數(shù)中自變量x的取值范圍是_____;函數(shù)中自變量x的取值范圍是______.13.如果x+y=5,那么代數(shù)式的值是______.14.已知點(diǎn)P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點(diǎn)P向左平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)Q,點(diǎn)Q也在該函數(shù)y=kx+b的圖象上.(1)k的值是;(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點(diǎn),且與反比例函數(shù)y=圖象交于C,D兩點(diǎn)(點(diǎn)C在第二象限內(nèi)),過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是.15.如圖,在矩形ABCD中,AD=4,點(diǎn)P是直線AD上一動(dòng)點(diǎn),若滿足△PBC是等腰三角形的點(diǎn)P有且只有3個(gè),則AB的長(zhǎng)為.16.分解因式:x2y﹣6xy+9y=_____.三、解答題(共8題,共72分)17.(8分)某校為了解學(xué)生的安全意識(shí)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)以上信息,解答下列問題:(1)這次調(diào)查一共抽取了名學(xué)生,其中安全意識(shí)為“很強(qiáng)”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是;(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)該校有1800名學(xué)生,現(xiàn)要對(duì)安全意識(shí)為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有名.18.(8分)計(jì)算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201819.(8分)如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為1.當(dāng)m=1,n=20時(shí).①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.20.(8分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為.(1)求二次函數(shù)的解析式;(2)若點(diǎn)是拋物線在第四象限上的一個(gè)動(dòng)點(diǎn),當(dāng)四邊形的面積最大時(shí),求點(diǎn)的坐標(biāo),并求出四邊形的最大面積;(3)若為拋物線對(duì)稱軸上一動(dòng)點(diǎn),直接寫出使為直角三角形的點(diǎn)的坐標(biāo).21.(8分)如圖,在△ABC中,AB=AC,∠BAC=90°,M是BC的中點(diǎn),延長(zhǎng)AM到點(diǎn)D,AE=AD,∠EAD=90°,CE交AB于點(diǎn)F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度數(shù);(3)用等式表示線段CD和CE之間的數(shù)量關(guān)系,并證明.22.(10分)如圖,△ABC三個(gè)定點(diǎn)坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;以原點(diǎn)O為位似中心,將△A1B1C1放大為原來(lái)的2倍,得到△A2B2C2,請(qǐng)?jiān)诘谌笙迌?nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.23.(12分)如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過(guò)點(diǎn)B作⊙O的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連接AE并延長(zhǎng)交BD于點(diǎn)F,直線CF交AB的延長(zhǎng)線于G.(1)求證:AE?FD=AF?EC;(2)求證:FC=FB;(3)若FB=FE=2,求⊙O的半徑r的長(zhǎng).24.下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對(duì)應(yīng)值,(表格中的符號(hào)“…”表示該項(xiàng)數(shù)據(jù)已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達(dá)式(2)拋物線y=ax2+bx+c的頂點(diǎn)為D,與y軸的交點(diǎn)為A,點(diǎn)M是拋物線對(duì)稱軸上一點(diǎn),直線AM交對(duì)稱軸右側(cè)的拋物線于點(diǎn)B,當(dāng)△ADM與△BDM的面積比為2:3時(shí),求B點(diǎn)坐標(biāo);(3)在(2)的條件下,設(shè)線段BD與x軸交于點(diǎn)C,試寫出∠BAD和∠DCO的數(shù)量關(guān)系,并說(shuō)明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)因式分解法,可得答案.【詳解】解:因式分解,得(x-2)(x+1)=0,

于是,得x-2=0或x+1=0,

解得x1=-1,x2=2,

故選:C.【點(diǎn)睛】本題考查了解一元二次方程,熟練掌握因式分解法是解題關(guān)鍵.2、B【解析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點(diǎn)睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關(guān)鍵.3、C【解析】

延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對(duì)應(yīng)角相等得到∠A=∠B,利用等角對(duì)等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點(diǎn),利用三線合一得到QO垂直于AB,得到一對(duì)直角相等,再由∠FQO與∠OQB為公共角,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對(duì)應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長(zhǎng)定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進(jìn)而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項(xiàng).【詳解】延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點(diǎn),即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長(zhǎng)定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設(shè)k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點(diǎn)睛】本題屬于圓的綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),切線長(zhǎng)定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運(yùn)用所學(xué)知識(shí).4、B【解析】

因?yàn)楫?dāng)x=1時(shí),代數(shù)式的值是7,所以1+1+m=7,所以m=5,當(dāng)x=-1時(shí),=-1-1+5=3,故選B.5、B【解析】

求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個(gè)實(shí)際問題可轉(zhuǎn)化為減法運(yùn)算,列算式計(jì)算即可.【詳解】3-(-4)=3+4=7℃.

故選B.6、D【解析】分析:依題意,知MN=40海里/小時(shí)×2小時(shí)=80海里,∵根據(jù)方向角的意義和平行的性質(zhì),∠M=70°,∠N=40°,∴根據(jù)三角形內(nèi)角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故選D.7、D【解析】

過(guò)O'作O'C⊥AB于點(diǎn)C,過(guò)O'作O'D⊥x軸于點(diǎn)D,由切線的性質(zhì)可求得O'D的長(zhǎng),則可得O'B的長(zhǎng),由垂徑定理可求得CB的長(zhǎng),在Rt△O'BC中,由勾股定理可求得O'C的長(zhǎng),從而可求得O'點(diǎn)坐標(biāo).【詳解】如圖,過(guò)O′作O′C⊥AB于點(diǎn)C,過(guò)O′作O′D⊥x軸于點(diǎn)D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點(diǎn)坐標(biāo)為(4,5),故選:D.【點(diǎn)睛】本題考查了切線的性質(zhì),坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是掌握切線的性質(zhì)和坐標(biāo)計(jì)算.8、A【解析】

∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故選A.9、C【解析】

連接AD,AM,由于△ABC是等腰三角形,點(diǎn)D是BC的中點(diǎn),故,在根據(jù)三角形的面積公式求出AD的長(zhǎng),再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)A關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)C,,推出,故AD的長(zhǎng)為BM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,MA∵△ABC是等腰三角形,點(diǎn)D是BC邊上的中點(diǎn)∴∴解得∵EF是線段AC的垂直平分線∴點(diǎn)A關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)C∴∵∴AD的長(zhǎng)為BM+MD的最小值∴△CDM的周長(zhǎng)最短故選:C.【點(diǎn)睛】本題考查了三角形線段長(zhǎng)度的問題,掌握等腰三角形的性質(zhì)、三角形的面積公式、垂直平分線的性質(zhì)是解題的關(guān)鍵.10、B【解析】

平行四邊形ADCE的對(duì)角線的交點(diǎn)是AC的中點(diǎn)O,當(dāng)OD⊥BC時(shí),OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對(duì)角線的交點(diǎn)是AC的中點(diǎn)O,當(dāng)OD⊥BC時(shí),OD最小,即DE最小。∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是利用三角形中位線定理進(jìn)行求解.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、10【解析】

由正方形性質(zhì)的得出B、D關(guān)于AC對(duì)稱,根據(jù)兩點(diǎn)之間線段最短可知,連接DE,交AC于P,連接BP,則此時(shí)PB+PE的值最小,進(jìn)而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時(shí)PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關(guān)于AC對(duì)稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.12、x≠2x≥3【解析】

根據(jù)分式的意義和二次根式的意義,分別求解.【詳解】解:根據(jù)分式的意義得2-x≠0,解得x≠2;根據(jù)二次根式的意義得2x-6≥0,解得x≥3.故答案為:x≠2,x≥3.【點(diǎn)睛】數(shù)自變量的范圍一般從幾個(gè)方面考慮:(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;(3)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開方數(shù)為非負(fù)數(shù).13、1【解析】

先將分式化簡(jiǎn),然后將x+y=1代入即可求出答案【詳解】當(dāng)x+y=1時(shí),原式=x+y=1,故答案為:1.【點(diǎn)睛】本題考查分式的化簡(jiǎn)求值,解題的關(guān)鍵是利用運(yùn)用分式的運(yùn)算法則求解代數(shù)式.14、(1)-2;(2)【解析】

(1)設(shè)點(diǎn)P的坐標(biāo)為(m,n),則點(diǎn)Q的坐標(biāo)為(m?1,n+2),依題意得:,解得:k=?2.故答案為?2.(2)∵BO⊥x軸,CE⊥x軸,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函數(shù)y=?2x+b中x=0,則y=b,∴BO=b;令一次函數(shù)y=?2x+b中y=0,則0=?2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE?AO=.∵OE?CE=|?4|=4,即=4,解得:b=,或b=?(舍去).故答案為.15、1.【解析】試題分析:如圖,當(dāng)AB=AD時(shí),滿足△PBC是等腰三角形的點(diǎn)P有且只有3個(gè),△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),則AB=AD=1,故答案為1.考點(diǎn):矩形的性質(zhì);等腰三角形的性質(zhì);勾股定理;分類討論.16、y(x﹣3)2【解析】本題考查因式分解.解答:.三、解答題(共8題,共72分)17、(1)120,30%;(2)作圖見解析;(3)1.【解析】試題分析:(1)用安全意識(shí)分“一般”的人數(shù)除以安全意識(shí)分“一般”的人數(shù)所占的百分比即可得這次調(diào)查一共抽取的學(xué)生人數(shù);用安全意識(shí)分“很強(qiáng)”的人數(shù)除以這次調(diào)查一共抽取的學(xué)生人數(shù)即可得安全意識(shí)“很強(qiáng)”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比;(2)用這次調(diào)查一共抽取的學(xué)生人數(shù)乘以安全意識(shí)分“較強(qiáng)”的人數(shù)所占的百分比即可得安全意識(shí)分“較強(qiáng)”的人數(shù),在條形統(tǒng)計(jì)圖上畫出即可;(3)用總?cè)藬?shù)乘以安全意識(shí)為“淡薄”、“一般”的學(xué)生一共所占的百分比即可得全校需要強(qiáng)化安全教育的學(xué)生的人數(shù).試題解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,補(bǔ)全統(tǒng)計(jì)圖如下:(3)1800×=1人.考點(diǎn):條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖;用樣本估計(jì)總體.18、-1【解析】

原式利用乘方的意義,特殊角的三角函數(shù)值,零指數(shù)冪法則計(jì)算即可求出值.【詳解】解:原式=﹣4+1+1+1=﹣1.【點(diǎn)睛】此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.19、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解析】

(1)①先確定出點(diǎn)A,B坐標(biāo),再利用待定系數(shù)法即可得出結(jié)論;

②先確定出點(diǎn)D坐標(biāo),進(jìn)而確定出點(diǎn)P坐標(biāo),進(jìn)而求出PA,PC,即可得出結(jié)論;

(2)先確定出B(1,),D(1,),進(jìn)而求出點(diǎn)P的坐標(biāo),再求出A,C坐標(biāo),最后用AC=BD,即可得出結(jié)論.【詳解】(1)①如圖1,,反比例函數(shù)為,當(dāng)時(shí),,,當(dāng)時(shí),,,,設(shè)直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點(diǎn)是線段的中點(diǎn),,當(dāng)時(shí),由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當(dāng)四邊形是正方形,記,的交點(diǎn)為,,當(dāng)時(shí),,,,,,,,,,.【點(diǎn)睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.20、(1);(2)P點(diǎn)坐標(biāo)為,;(3)或或或.【解析】

(1)根據(jù)待定系數(shù)法把A、C兩點(diǎn)坐標(biāo)代入可求得二次函數(shù)的解析式;

(2)由拋物線解析式可求得B點(diǎn)坐標(biāo),由B、C坐標(biāo)可求得直線BC解析式,可設(shè)出P點(diǎn)坐標(biāo),用P點(diǎn)坐標(biāo)表示出四邊形ABPC的面積,根據(jù)二次函數(shù)的性質(zhì)可求得其面積的最大值及P點(diǎn)坐標(biāo);

(3)首先設(shè)出Q點(diǎn)的坐標(biāo),則可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三種情況,求解即可.【詳解】解:(1)∵A(-1,0),在上,,解得,∴二次函數(shù)的解析式為;(2)在中,令可得,解得或,,且,∴經(jīng)過(guò)、兩點(diǎn)的直線為,設(shè)點(diǎn)的坐標(biāo)為,如圖,過(guò)點(diǎn)作軸,垂足為,與直線交于點(diǎn),則,,∴當(dāng)時(shí),四邊形的面積最大,此時(shí)P點(diǎn)坐標(biāo)為,∴四邊形的最大面積為;(3),∴對(duì)稱軸為,∴可設(shè)點(diǎn)坐標(biāo)為,,,,,,為直角三角形,∴有、和三種情況,①當(dāng)時(shí),則有,即,解得或,此時(shí)點(diǎn)坐標(biāo)為或;②當(dāng)時(shí),則有,即,解得,此時(shí)點(diǎn)坐標(biāo)為;③當(dāng)時(shí),則有,即,解得,此時(shí)點(diǎn)坐標(biāo)為;綜上可知點(diǎn)的坐標(biāo)為或或或.【點(diǎn)睛】本題考查了待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、勾股定理、方程思想及分類討論思想等知識(shí),注意分類討論思想的應(yīng)用.21、(1)45;(2)90°;(3)見解析.【解析】

(1)根據(jù)等腰三角形三線合一可得結(jié)論;(2)連接DB,先證明△BAD≌△CAD,得BD=CD=DF,則∠DBA=∠DFB=∠DCA,根據(jù)四邊形內(nèi)角和與平角的定義可得∠BAC+∠CDF=180°,所以∠CDF=90°;(3)證明△EAF≌△DAF,得DF=EF,由②可知,可得結(jié)論.【詳解】(1)解:∵AB=AC,M是BC的中點(diǎn),∴AM⊥BC,∠BAD=∠CAD,∵∠BAC=90°,∴∠CAD=45°,故答案為:45(2)解:如圖,連接DB.∵AB=AC,∠BAC=90°,M是BC的中點(diǎn),∴∠BAD=∠CAD=45°.∴△BAD≌△CAD.∴∠DBA=∠DCA,BD=CD.∵CD=DF,∴BD=DF.∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA=180°,∴∠DCA+∠DFA=180°.∴∠BAC+∠CDF=180°.∴∠CDF=90°.(3).證明:∵∠EAD=90°,∴∠EAF=∠DAF=45°.∵AD=AE,∴△EAF≌△DAF.∴DF=EF.由②可知,.∴.【點(diǎn)睛】此題考查等腰三角形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形的性質(zhì),解題關(guān)鍵在于掌握判定定理及性質(zhì).22、(1)見解析;(2)圖見解析;.【解析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于y軸的對(duì)稱點(diǎn)A1、B1、C1的位置,然后順次連接即可.(2)連接A1O并延長(zhǎng)至A2,使A2O=2A1O,連接B1O并延長(zhǎng)至B2,使B2O=2B1O,連接C1O并延長(zhǎng)至C2,使C2O=2C1O,然后順次連接即可,再根據(jù)相似三角形面積的比等于相似比的平方解答.【詳解】解:(1)△A1B1C1如圖所示.(2)△A2B2C2如圖所示.∵△A1B1C1放大為原來(lái)的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比為.∴S△A1B1C1:S△A2B2C2=()2=.23、(1)詳見解析;(2)詳見解析;(3)2.【解析】(1)由BD是⊙O的切線得出∠DBA=90°,推出CH∥BD,證△AEC∽△AFD,得出比例式即可.(2)證△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根據(jù)直角三角形斜邊上中線性質(zhì)得出CF=DF=BF即可.(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,連接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切線,由切割線定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,從而由勾股定理求得AB=BG的長(zhǎng),從而得到⊙O的半徑r.24、(1)y=x2﹣4x+2;(2)點(diǎn)B的坐標(biāo)為(5,7);(1)∠BAD和∠DCO互補(bǔ),理由詳見解析.【解析】

(1)由(1,1)在拋物線y=ax2上可求出a值,再由(﹣1,7)、(0,2)在拋物線y=x2+bx+c上可

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論