版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省孝感市名校2025屆九上數(shù)學期末質量跟蹤監(jiān)視模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,是矩形內的任意一點,連接、、、,得到,,,,設它們的面積分別是,,,,給出如下結論:①②③若,則④若,則點在矩形的對角線上.其中正確的結論的序號是()A.①② B.②③ C.③④ D.②④2.從,0,π,3.14,6這5個數(shù)中隨機抽取一個數(shù),抽到有理數(shù)的概率是()A. B. C. D.3.如圖,將兩張長為10,寬為2的矩形紙條交叉,使重疊部分是一個菱形,容易知道當兩張紙條垂直時,菱形的周長有最小值8,那么,菱形周長的最大值為()A. B. C. D.214.若,則()A. B. C. D.5.等腰三角形底角與頂角之間的函數(shù)關系是()A.正比例函數(shù) B.一次函數(shù) C.反比例函數(shù) D.二次函數(shù)6.如圖,∠1=∠2,則下列各式不能說明△ABC∽△ADE的是()A.∠D=∠B B.∠E=∠C C. D.7.下列四個交通標志圖案中,中心對稱圖形共有()A.1 B.2 C.3 D.48.有x支球隊參加籃球比賽,每兩隊之間都比賽一場,共比賽了21場,則下列方程中符合題意的是()A.x(x﹣1)=21 B.x(x﹣1)=42C.x(x+1)=21 D.x(x+1)=429.2018年某市初中學業(yè)水平實驗操作考試,要求每名學生從物理、化學、生物三個學科中隨機抽取一科參加測試,小華和小強都抽到物理學科的概率是().A. B. C. D.10.已知反比例函數(shù),下列結論中不正確的是()A.圖象必經過點 B.隨的增大而增大C.圖象在第二,四象限內 D.若,則11.在△ABC中,∠A、∠B都是銳角,且,則關于△ABC的形狀的說法錯誤的是()A.它不是直角三角形 B.它是鈍角三角形C.它是銳角三角形 D.它是等腰三角形12.如圖,在菱形ABCD中,對角線AC、BD相交于點O,,則四邊形AODE一定是()A.正方形 B.矩形 C.菱形 D.不能確定二、填空題(每題4分,共24分)13.若,則=____________.14.如圖等邊三角形內接于,若的半徑為1,則圖中陰影部分的面積等于_________.15.已知,則的值是_____________.16.如圖,將Rt△ABC(其中∠B=30°,∠C=90°)繞點A按順時針方向旋轉到△AB1C1的位置,使得點B、A、B1在同一條直線上,那么旋轉角等于_____.17.如圖,已知點A,點C在反比例函數(shù)y=(k>0,x>0)的圖象上,AB⊥x軸于點B,OC交AB于點D,若CD=OD,則△AOD與△BCD的面積比為__.18.一個不透明的盒子里有若干個白球,在不允許將球倒出來的情況下,為估計白球的個數(shù),小剛向其中放入8個黑球,搖均后從中隨機摸出一個球記下顏色,再把它放回盒中,不斷重復,共摸球400次,其中80次摸到黑球,估計盒子大約有白球____________個.三、解答題(共78分)19.(8分)如圖,拋物線與x軸交于A(1,0)、B(-3,0)兩點,與y軸交于點C(0,3),設拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標.
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.20.(8分)拋物線y=ax2+bx+1經過點A(﹣1,0),B(1,0),與y軸交于點C.點D(xD,yD)為拋物線上一個動點,其中1<xD<1.連接AC,BC,DB,DC.(1)求該拋物線的解析式;(2)當△BCD的面積等于△AOC的面積的2倍時,求點D的坐標;(1)在(2)的條件下,若點M是x軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,求出點M的坐標;若不存在,請說明理由.21.(8分)如圖,點在的直徑的延長線上,點在上,且AC=CD,∠ACD=120°.(1)求證:是的切線;(2)若的半徑為2,求圖中陰影部分的面積.22.(10分)已知拋物線y=2x2-12x+13(1)當x為何值時,y有最小值,最小值是多少?(2)當x為何值時,y隨x的增大而減小(3)將該拋物線向右平移2個單位,再向上平移2個單位,請直接寫出新拋物線的表達式23.(10分)某企業(yè)設計了一款工藝品,每件成本40元,出于營銷考慮,要求每件售價不得低于40元,但物價部門要求每件售價不得高于60元.據市場調查,銷售單價是50元時,每天的銷售量是100件,而銷售單價每漲1元,每天就少售出2件,設單價上漲元.(1)求當為多少時每天的利潤是1350元?(2)設每天的銷售利潤為,求銷售單價為多少元時,每天利潤最大?最大利潤是多少?24.(10分)裝潢公司要給邊長為6米的正方形墻面ABCD進行裝潢,設計圖案如圖所示(四周是四個全等的矩形,用材料甲進行裝潢;中心區(qū)是正方形MNPQ,用材料乙進行裝潢).兩種裝潢材料的成本如下表:材料甲乙價格(元/米2)5040設矩形的較短邊AH的長為x米,裝潢材料的總費用為y元.(1)MQ的長為米(用含x的代數(shù)式表示);(2)求y關于x的函數(shù)解析式;(3)當中心區(qū)的邊長不小于2米時,預備資金1760元購買材料一定夠用嗎?請說明理由.25.(12分)某水果批發(fā)商銷售每箱進價為40元的蘋果.經市場調研發(fā)現(xiàn):若每箱以50元的價格銷售,平均每天銷售90箱;價格每提高1元,則平均每天少銷售3箱.設每箱的銷售價為x元(x>50),平均每天的銷售量為y箱,該批發(fā)商平均每天的銷售利潤w元.(1)y與x之間的函數(shù)解析式為__________;(2)求w與x之間的函數(shù)解析式;(3)當x為多少元時,可以獲得最大利潤?最大利潤是多少?26.如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與的面積之比為多少?
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據三角形面積公式、矩形性質及相似多邊形的性質得出:①矩形對角線平分矩形,S△ABD=S△BCD,只有P點在BD上時,S?+S?=S?+S4;②根據底邊相等的兩個三角形的面積公式求和可知,S?+S?=矩形ABCD面積,同理S?+S4=矩形ABCD面積,所以S?+S?=S?+S4;③根據底邊相等高不相等的三角形面積比等于高的比來說明即可;④根據相似四邊形判定和性質,對應角相等、對應邊成比例的四邊形相似,矩形AEPF∽矩形ABCD推出,點P在對角線上.【詳解】解:①當點P在矩形的對角線BD上時,S?+S?=S?+S4.但P是矩形ABCD內的任意一點,所以該等式不一定成立。故①不一定正確;②∵矩形∴AB=CD,AD=BC∵△APD以AD為底邊,△PBC以BC為底邊,這兩三角形的底相等,高的和為AB,∴S?+S?=S矩形ABCD;同理可得S?+S4=S矩形ABCD,∴②S?+S4=S?+S?正確;③若S?=2S?,只能得出△APD與△PBC高度之比是,S?、S4分別是以AB、CD為底的三角形的面積,底相等,高的比不一定等于,S4=2S2不一定正確;故此選項錯誤;④過點P分別作PF⊥AD于點F,PE⊥AB于點E,F.若S1=S2,.則AD·PF=AB·PE∴△APD與△PAB的高的比為:∵∠DAE=∠PEA=∠PFA=90°∴四邊形AEPF是矩形,∴矩形AEPF∽矩形ABCD∴∴P點在矩形的對角線上,選項④正確.故選:D【點睛】本題考查了三角形面積公式的應用,相似多邊形的判定和性質,用相似多邊形性質對應邊成比例是解決本題的難點.2、C【解析】∵在這5個數(shù)中只有0、3.14和6為有理數(shù),∴從這5個數(shù)中隨機抽取一個數(shù),抽到有理數(shù)的概率是.故選C.3、C【分析】畫出圖形,設菱形的邊長為x,根據勾股定理求出周長即可.【詳解】解:當兩張紙條如圖所示放置時,菱形周長最大,設這時菱形的邊長為xcm,在Rt△ABC中,由勾股定理:x2=(10﹣x)2+22,解得:x=,∴4x=,即菱形的最大周長為cm.故選:C.【點睛】此題考查矩形的性質,本題的解答關鍵是怎樣放置紙條使得到的菱形的周長最大,然后根據圖形列方程.4、B【解析】根據合并性質解答即可,對于實數(shù)a,b,c,d,且有b≠0,d≠0,如果,則有.【詳解】,,,故選:.【點睛】本題考查了比例的性質,熟練掌握合比性質是解答本題的關鍵.合比性質:在一個比例等式中,第一個比例的前后項之和與第一個比例的后項的比,等于第二個比例的前后項之和與第二個比例的后項的比.5、B【解析】根據一次函數(shù)的定義,可得答案.【詳解】設等腰三角形的底角為y,頂角為x,由題意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角與頂角之間的函數(shù)關系是一次函數(shù)關系,故選B.【點睛】本題考查了實際問題與一次函數(shù),根據題意正確列出函數(shù)關系式是解題的關鍵.6、D【分析】根據∠1=∠2,可知∠DAE=∠BAC,因此只要再找一組角或一組對應邊成比例即可.【詳解】解:A和B符合有兩組角對應相等的兩個三角形相似;C、符合兩組對應邊的比相等且相應的夾角相等的兩個三角形相似;D、對應邊成比例但無法證明其夾角相等,故其不能推出兩三角形相似.故選D.【點睛】考查了相似三角形的判定:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.7、B【分析】根據中心對稱的概念和各圖形的特點即可求解.【詳解】∵中心對稱圖形,是把一個圖形繞一個點旋轉180°后能和原來的圖形重合,∴第一個和第二個都不符合;第三個和第四個圖形是中心對稱圖形,∴中心對稱圖形共有2個.故選:B.【點睛】本題主要考查中心對稱圖形的概念,掌握中心對稱圖形的概念和特點,是解題的關鍵.8、B【分析】設這次有x隊參加比賽,由于賽制為單循環(huán)形式(每兩隊之間都賽一場),則此次比賽的總場數(shù)為:x(x-1)場.根據題意可知:此次比賽的總場數(shù)=21場,依此等量關系列出方程即可.【詳解】設這次有x隊參加比賽,則此次比賽的總場數(shù)為x(x?1)場,根據題意列出方程得:x(x?1)=21,整理,得:x(x?1)=42,故答案為x(x?1)=42.故選B.【點睛】本題考查由實際問題抽象出一元二次方程,準確找到等量關系是解題的關鍵.9、D【分析】直接利用樹狀圖法列舉出所有的可能,進而利用概率公式求出答案.【詳解】解:如圖所示:一共有9種可能,符合題意的有1種,故小華和小強都抽到物理學科的概率是:,故選D.【點睛】此題主要考查了樹狀圖法求概率,正確列舉出所有可能是解題關鍵.10、B【分析】根據反比例函數(shù)圖象上點的坐標特點:橫縱坐標之積=k,可以判斷出A的正誤;根據反比例函數(shù)的性質:k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大可判斷出B、C、D的正誤.【詳解】A、反比例函數(shù),所過的點的橫縱坐標之積=?6,此結論正確,故此選項不符合題意;B、反比例函數(shù),在每一象限內y隨x的增大而增大,此結論不正確,故此選項符合題意;C、反比例函數(shù),圖象在第二、四象限內,此結論正確,故此選項不合題意;D、反比例函數(shù),當x>1時圖象在第四象限,y隨x的增大而增大,故x>1時,?6<y<0;故選:B.【點睛】此題主要考查了反比例函數(shù)的性質,以及反比例函數(shù)圖象上點的坐標特點,關鍵是熟練掌握反比例函數(shù)的性質:(1)反比例函數(shù)y=(k≠0)的圖象是雙曲線;(2)當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減??;(3)當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大.11、C【解析】先根據特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),再根據三角形內角和定理求出∠C即可作出判斷.【詳解】∵△ABC中,∠A、∠B都是銳角,sinA=,cosB=,∴∠A=∠B=30°.∴∠C=180°?∠A?∠B=180?30°?30°=120°.故選C.【點睛】本題主要考查特殊角三角函數(shù)值,熟悉掌握是關鍵.12、B【分析】根據題意可判斷出四邊形AODE是平行四邊形,再由菱形的性質可得出AC⊥BD,即∠AOD=90°,繼而可判斷出四邊形AODE是矩形;【詳解】證明:∵DE∥AC,AE∥BD,∴四邊形AODE是平行四邊形,∵四邊形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四邊形AODE是矩形.故選B.【點睛】本題考查了菱形的性質、矩形的判定與性質、平行四邊形的判定;熟練掌握矩形的判定與性質、菱形的性質是解決問題的關鍵.二、填空題(每題4分,共24分)13、【分析】根據合比定理即可得答案.【詳解】∵,∴,∴=,故答案為:【點睛】本題考查合比定理,如果,那么;熟練掌握合比定理是解題關鍵.14、【分析】如圖(見解析),連接OC,根據圓的內接三角形和等邊三角形的性質可得,的面積等于的面積、以及的度數(shù),從而可得陰影部分的面積等于鈍角對應的扇形面積.【詳解】如圖,連接OC由圓的內接三角形得,點O為垂直平分線的交點又因是等邊三角形,則其垂直平分線的交點與角平分線的交點重合,且點O到AB和AC的距離相等則故答案為:.【點睛】本題考查了圓的內接三角形的性質、等邊三角形的性質、扇形面積公式,根據等邊三角形的性質得出的面積等于的面積是解題關鍵.15、【分析】設a=3k,則b=4k,代入計算即可.【詳解】設a=3k,則b=4k,∴.故答案為:.【點睛】本題考查了比例的性質.熟練掌握k值法是解答本題的關鍵.16、180°【分析】根據旋轉的性質可直接判定∠BAB1等于旋轉角,由于點B、A、B1在同一條直線上,可知旋轉角為180°.【詳解】解:由旋轉的性質定義知,∠BAB1等于旋轉角,∵點B、A、B1在同一條直線上,∴∠BAB1為平角,∴∠BAB1=180°,故答案為:180°.【點睛】此題考查是旋轉的性質,熟知圖形旋轉后所得圖形與原圖形全等是解答此題的關鍵.17、1.【分析】作CE⊥x軸于E,如圖,利用平行線分線段成比例得到===,設D(m,n),則C(2m,2n),再根據反比例函數(shù)圖象上點的坐標特征得到k=4mn,則A(m,4n),然后根據三角形面積公式用m、n表示S△AOD和S△BCD,從而得到它們的比.【詳解】作CE⊥x軸于E,如圖,∵DB∥CE,∴===,設D(m,n),則C(2m,2n),∵C(2m,2n)在反比例函數(shù)圖象上,∴k=2m×2n=4mn,∴A(m,4n),∵S△AOD=×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn∴△AOD與△BCD的面積比=mn:mn=1.故答案為1.【點睛】考核知識點:平行線分線段成比例,反比例函數(shù);數(shù)形結合,利用平行線分線段成比例,反比例函數(shù)定義求出點的坐標關系是關鍵.18、【分析】可根據“黑球數(shù)量÷黑白球總數(shù)=黑球所占比例”來列等量關系式,其中“黑白球總數(shù)=黑球個數(shù)+白球個數(shù)“,“黑球所占比例=隨機摸到的黑球次數(shù)÷總共摸球的次數(shù)”.【詳解】設盒子里有白球x個,根據=得:,解得:x=32.經檢驗得x=32是方程的解,故答案為32.【點睛】此題考查利用頻率估計概率,解題關鍵在于掌握運算公式.三、解答題(共78分)19、(1)y=-x2-2x+1,(-1,4);(2)△BCD是直角三角形.理由見解析;(1)P1(0,0),P2(0,?),P1(?9,0).【分析】(1)利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)利用勾股定理求得△BCD的三邊的長,然后根據勾股定理的逆定理即可作出判斷;
(1)分p在x軸和y軸兩種情況討論,舍出P的坐標,根據相似三角形的對應邊的比相等即可求解.【詳解】(1)設拋物線的解析式為y=ax2+bx+c
由拋物線與y軸交于點C(0,1),可知c=1.即拋物線的解析式為y=ax2+bx+1.
把點A(1,0)、點B(-1,0)代入,得解得a=-1,b=-2
∴拋物線的解析式為y=-x2-2x+1.
∵y=-x2-2x+1=-(x+1)2+4
∴頂點D的坐標為(-1,4);
(2)△BCD是直角三角形.
理由如下:過點D分別作x軸、y軸的垂線,垂足分別為E、F.
∵在Rt△BOC中,OB=1,OC=1,
∴BC2=OB2+OC2=18
在Rt△CDF中,DF=1,CF=OF-OC=4-1=1,
∴CD2=DF2+CF2=2
在Rt△BDE中,DE=4,BE=OB-OE=1-1=2,
∴BD2=DE2+BE2=20
∴BC2+CD2=BD2
∴△BCD為直角三角形.(1)①△BCD的三邊,,又,故當P是原點O時,△ACP∽△DBC;
②當AC是直角邊時,若AC與CD是對應邊,設P的坐標是(0,a),則PC=1-a,,即,解得:a=-9,則P的坐標是(0,-9),三角形ACP不是直角三角形,則△ACP∽△CBD不成立;
③當AC是直角邊,若AC與BC是對應邊時,設P的坐標是(0,b),則PC=1-b,則,即,解得:b=-,故P是(0,-)時,則△ACP∽△CBD一定成立;
④當P在x軸上時,AC是直角邊,P一定在B的左側,設P的坐標是(d,0).
則AP=1-d,當AC與CD是對應邊時,,即,解得:d=1-1,此時,兩個三角形不相似;
⑤當P在x軸上時,AC是直角邊,P一定在B的左側,設P的坐標是(e,0).
則AP=1-e,當AC與DC是對應邊時,,解得:e=-9,符合條件.
總之,符合條件的點P的坐標為:P1(0,0),P2(0,?),P1(?9,0).【點睛】此題考查相似三角形的判定與性質,待定系數(shù)法,勾股定理以及其逆定理的綜合應用,解題關鍵在于作輔助線.20、(1)拋物線的解析式為y=﹣x2+2x+1;(2)點D坐標(2,1);(1)M坐標(1,0)或(,0)或(﹣,0)或(5,0)【分析】(1)利用待定系數(shù)法求函數(shù)解析式;(2)根據解析式先求出△AOC的面積,設點D(xD,yD),由直線BC的解析式表示點E的坐標,求出DE的長,再由△BCD的面積等于△AOC的面積的2倍,列出關于xD的方程得到點D的坐標;(1)設點M(m,0),點N(x,y),分兩種情況討論:當BD為邊時或BD為對角線時,列中點關系式解答.【詳解】解:(1)∵拋物線y=ax2+bx+1經過點A(﹣1,0),B(1,0),∴,解得:∴拋物線的解析式為y=﹣x2+2x+1;(2)如圖,過點D作DH⊥x軸,與直線BC交于點E,∵拋物線y=﹣x2+2x+1,與y軸交于點C,∴點C(0,1),∴OC=1,∴S△AOC=×1×1=,∵點B(1,0),點C(0,1)∴直線BC解析式為y=﹣x+1,∵點D(xD,yD),∴點E(xD,﹣xD+1),yD=﹣xD2+2xD+1,∴DE=﹣xD2+2xD+1﹣(﹣xD+1)=﹣xD2+1xD,∴S△BCD=1=×DE×1,∵△BCD的面積等于△AOC的面積的2倍∴2=﹣xD2+1xD,∴xD=1(舍去),xD=2,∴點D坐標(2,1);(1)設點M(m,0),點N(x,y)當BD為邊,四邊形BDNM是平行四邊形,∴BN與DM互相平分,∴,∴y=1,∴1=﹣x2+2x+1∴x=2(不合題意),x=0∴點N(0,1)∴,∴m=1,當BD為邊,四邊形BDMN是平行四邊形,∴BM與DN互相平分,∴,∴y=﹣1,∴﹣1=﹣x2+2x+1∴x=1±,∴,∴m=±,當BD為對角線,∴BD中點坐標(,),∴,,∴y=1,∴1=﹣x2+2x+1∴x=2(不合題意),x=0∴點N(0,1)∴m=5,綜上所述點M坐標(1,0)或(,0)或(﹣,0)或(5,0).【點睛】此題是二次函數(shù)的綜合題,考查待定系數(shù)法求函數(shù)解析式,動線、動圖形與拋物線的結合問題,在(1)使以點B,D,M,N為頂點的四邊形是平行四邊形時,要分情況討論:當BD為邊時或BD為對角線時,不要有遺漏,平行四邊形的性質:對角線互相平分,列中點坐標等式求得點M的坐標.21、(1)見解析(2)圖中陰影部分的面積為π.【分析】(1)連接OC.只需證明∠OCD=90°.根據等腰三角形的性質即可證明;(2)先根據直角三角形中30°的銳角所對的直角邊是斜邊的一半求出OD,然后根據勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.【詳解】(1)證明:連接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切線;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴圖中陰影部分的面積為:-.22、(1)當x=3時,y有最小值,最小值是-5;(2)當x<3時,y隨x的增大而減小;(3)y=2x2-20x+47.【分析】(1)將二次函數(shù)的一般式轉化為頂點式,即可求出結論;(2)根據拋物線的開口方向和對稱軸左右兩側的增減性即可得出結論;(3)根據拋物線的平移規(guī)律:括號內左加右減,括號外上加下減,即可得出結論.【詳解】解:(1)y=2x2-12x+13=2(x2-6x)+13=2(x2-6x+9-9)+13=2(x-3)2-5∵2>0∴當x=3時,y有最小值,最小值是-5;(2)∵2>0,對稱軸為x=3∴拋物線的開口向上∴當x<3時,y隨x的增大而減小;(3)∵將該拋物線向右平移2個單位,再向上平移2個單位,∴平移后的解析式為:y=2(x-3-2)2-5+2=2(x-5)2-3即新拋物線的表達式為y=2x2-20x+47【點睛】此題考查的是二次函數(shù)的圖像及性質,掌握用二次函數(shù)的頂點式求最值、二次函數(shù)的增減性和二次函數(shù)的平移規(guī)律是解決此題的關鍵.23、(1)時,每天的利潤是1350元;(2)單價為60元時,每天利潤最大,最大利潤是1600元【分析】(1)根據每天的利潤=單件的利潤×銷售數(shù)量列出方程,然后解方程即可;(2)根據每天的利潤=單件的利潤×銷售數(shù)量表示出每天的銷售利潤,再利用二次函數(shù)的性質求最大值即可.【詳解】(1)由題意得,即,解得:,∵物價部門要求每件不得高于60元,∴,即時每天的利潤是1350元;(2)由題意得:,∵拋物線開口向下,對稱軸為,在對稱軸左側,隨的增大而增大,且,∴當時,(元),當時,售價為(元),∴單價為60元時,每天利潤最大,最大利潤是1600元.【點睛】本題主要考查一元二次方程和二次函數(shù)的應用,掌握一元二次方程的解法和二次函數(shù)的性質是解題的關鍵.24、(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)預備資金4元購買材料一定夠用,理由見解析【分析】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學《園林建筑設計》2021-2022學年第一學期期末試卷
- 大學學校辭職報告11篇
- dark green dress造句不同意思
- 石河子大學《水工建筑物》2022-2023學年第一學期期末試卷
- 石河子大學《籃球》2022-2023學年第一學期期末試卷
- 沈陽理工大學《數(shù)字圖像處理》2023-2024學年期末試卷
- 沈陽理工大學《機器人技術及應用》2023-2024學年第一學期期末試卷
- 經濟法基礎(下)學習通超星期末考試答案章節(jié)答案2024年
- 2018年四川遂寧中考滿分作文《爭取》3
- 股權合同 英文 模板
- 初中語文人教七年級上冊要拿我當一挺機關槍使用
- 北京頌歌原版五線譜鋼琴譜正譜樂譜
- 病史采集和臨床檢查方法
- PSUR模板僅供參考
- 火力發(fā)電企業(yè)作業(yè)活動風險分級管控清單(參考)
- 民法典合同編之保證合同實務解讀PPT
- 全國第四輪學科評估PPT幻燈片課件(PPT 24頁)
- 大氣污染控制工程課程設計-某廠酸洗硫酸煙霧治理設施設計
- 名牌包包網紅主播電商直播帶貨話術腳本
- 高考語文作文素材人物速遞——蘇炳添課件18張
- 蛋雞養(yǎng)殖場管理制度管理辦法
評論
0/150
提交評論