成都市高中學(xué)階段教育學(xué)校2025屆九上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第1頁
成都市高中學(xué)階段教育學(xué)校2025屆九上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第2頁
成都市高中學(xué)階段教育學(xué)校2025屆九上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第3頁
成都市高中學(xué)階段教育學(xué)校2025屆九上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第4頁
成都市高中學(xué)階段教育學(xué)校2025屆九上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

成都市高中學(xué)階段教育學(xué)校2025屆九上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖是二次函數(shù)圖象的一部分,則關(guān)于的不等式的解集是()A. B. C. D.2.一元二次方程x2﹣6x﹣1=0配方后可變形為()A. B.C. D.3.如圖是一個半徑為5cm的圓柱形輸油管的橫截面,若油面寬AB=8cm,則油面的深度為()A.1cm B.1.5cm C.2cm D.2.5cm4.關(guān)于拋物線,下列說法錯誤的是A.開口向上 B.對稱軸是y軸C.函數(shù)有最大值 D.當(dāng)x>0時,函數(shù)y隨x的增大而增大5.若點是反比例函數(shù)圖象上一點,則下列說法正確的是()A.圖象位于二、四象限B.當(dāng)時,隨的增大而減小C.點在函數(shù)圖象上D.當(dāng)時,6.如圖,△ABC內(nèi)接于⊙O,AB=BC,∠ABC=120°,AD為⊙O的直徑,AD=6,那么AB的值為()A.3 B. C. D.27.一個不透明的袋子裝有除顏色外其余均相同的2個白球和個黑球.隨機(jī)地從袋中摸出一個球記錄下顏色,再放回袋中搖勻.大量重復(fù)試驗后,發(fā)現(xiàn)摸出白球的頻率穩(wěn)定在1.2附近,則的值為()A.2 B.4 C.8 D.118.在下列各式中,運(yùn)算結(jié)果正確的是()A.x2+x2=x4 B.x﹣2x=﹣xC.x2?x3=x6 D.(x﹣1)2=x2﹣19.在反比例函數(shù)的圖象在某象限內(nèi),隨著的增大而增大,則的取值范圍是()A. B. C. D.10.下列各式中屬于最簡二次根式的是()A. B. C. D.二、填空題(每小題3分,共24分)11.已知為銳角,且,那么等于_____________.12.一圓錐的母線長為5,底面半徑為3,則該圓錐的側(cè)面積為________.13.已知正方形ABCD的邊長為,分別以B、D為圓心,以正方形的邊長為半徑在正方形內(nèi)畫弧,得到如圖所示的陰影部分,若隨機(jī)向正方形ABCD內(nèi)投擲一顆石子,則石子落在陰影部分的概率為_____.(結(jié)果保留π)14.如圖,已知在矩形ABCD中,點E在邊BC上,BE=2CE,將矩形沿著過點E的直線翻折后,點C,D分別落在邊BC下方的點C′,D′處,且點C′,D′,B在同一條直線上,折痕與邊AD交于點F,D′F與BE交于點G.設(shè)AB=t,那么△EFG的周長為___(用含t的代數(shù)式表示).15.設(shè)x1、x2是關(guān)于x的方程x2+3x-5=0的兩個根,則x1+x2-x1?x2=________.16.如圖,在□ABCD中,AB=5,AD=6,AD、AB、BC分別與⊙O相切于E、F、G三點,過點C作⊙O的切線交AD于點N,切點為M.當(dāng)CN⊥AD時,⊙O的半徑為____.17.如圖,量角器的0度刻度線為,將一矩形直角與量角器部分重疊,使直尺一邊與量角器相切于點,直尺另一邊交量角器于點,量得,點在量角器上的度數(shù)為60°,則該直尺的寬度為_________________.18.已知△ABC的內(nèi)角滿足=__________度.三、解答題(共66分)19.(10分)化簡分式,并從﹣1≤x≤3中選一個你認(rèn)為合適的整數(shù)x代入求值.20.(6分)如圖,拋物線經(jīng)過點A(1,0),B(4,0)與軸交于點C.(1)求拋物線的解析式;(2)如圖①,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最???若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.(3)如圖②,點Q是線段OB上一動點,連接BC,在線段BC上是否存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求M的坐標(biāo);若不存在,請說明理由.21.(6分)在正方形中,點是邊上一點,連接.圖1圖2(1)如圖1,點為的中點,連接.已知,,求的長;(2)如圖2,過點作的垂線交于點,交的延長線于點,點為對角線的中點,連接并延長交于點,求證:.22.(8分)已知:點D是△ABC中AC的中點,AE∥BC,ED交AB于點G,交BC的延長線于點F.(1)求證:△GAE∽△GBF;(2)求證:AE=CF;(3)若BG:GA=3:1,BC=8,求AE的長.23.(8分)春秋旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):某單位組織員工去天水灣風(fēng)景區(qū)旅游,共支付給春秋旅行社旅游費(fèi)用27000元,請問該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?24.(8分)如圖,是的直徑,是的切線,切點為,交于點,點是的中點.(1)試判斷直線與的位置關(guān)系,并說明理由;(2)若的半徑為2,,,求圖中陰影部分的周長.25.(10分)中華人民共和國《城市道路路內(nèi)停車泊位設(shè)置規(guī)范》規(guī)定:米以上的,可在兩側(cè)設(shè)停車泊位,路幅寬米到米的,可在單側(cè)設(shè)停車泊位,路幅寬米以下的,不能設(shè)停車泊位;米,車位寬米;米.根據(jù)上述的規(guī)定,在不考慮車位間隔線和車道間隔線的寬度的情況下,如果在一條路幅寬為米的雙向通行車道設(shè)置同一種排列方式的小型停車泊位,請回答下列問題:(1)可在該道路兩側(cè)設(shè)置停車泊位的排列方式為;(2)如果這段道路長米,那么在道路兩側(cè)最多可以設(shè)置停車泊位個.(參考數(shù)據(jù):,)26.(10分)如圖,有一座圓弧形拱橋,它的跨度為,拱高為,當(dāng)洪水泛濫到跨度只有時,就要采取緊急措施,若某次洪水中,拱頂離水面只有,即時,試通過計算說明是否需要采取緊急措施.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】先根據(jù)拋物線平移的規(guī)律得到拋物線,通過觀察圖象可知,它的對稱軸以及與軸的交點,利用函數(shù)圖像的性質(zhì)可以直接得到答案.【詳解】解:∵根據(jù)拋物線平移的規(guī)律可知,將二次函數(shù)向左平移個單位可得拋物線,如圖:∴對稱軸為,與軸的交點為,∴由圖像可知關(guān)于的不等式的解集為:.故選:D【點睛】本題考查了二次函數(shù)與不等式,主要利用了二次函數(shù)的平移規(guī)律、對稱性,數(shù)形結(jié)合的思想,解題關(guān)鍵在于通過平移規(guī)律得到新的二次函數(shù)圖象以及與軸的交點坐標(biāo).2、B【分析】根據(jù)配方法即可求出答案.【詳解】解:∵x2﹣6x﹣1=0,∴x2﹣6x=1,∴(x﹣3)2=10,故選B.【點睛】此題主要考查一元二次方程的配方法,解題的關(guān)鍵是熟知配方法的運(yùn)用.3、A【分析】過點O作OD⊥AB于點D,根據(jù)垂徑定理可求出AD的長,再在Rt△AOD中,利用勾股定理求出OD的長即可得到答案.【詳解】解:過點O作OD⊥AB于點D,∵AB=8cm,∴AD=AB=4cm,在Rt△AOD中,OD===2(cm),∴油面深度為:5-2=1(cm)故選:A.【點睛】本題考查了垂徑定理和勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.4、C【分析】由拋物線解析式可求得其開口方向、頂點坐標(biāo)、最值及增減性,則可判斷四個選項,可求得答案.【詳解】A.因為a=2>0,所以開口向上,正確;B.對稱軸是y軸,正確;C.當(dāng)x=0時,函數(shù)有最小值0,錯誤;D.當(dāng)x>0時,y隨x增大而增大,正確;故選:C【點睛】考查二次函數(shù)的圖象與性質(zhì),掌握二次函數(shù)的圖象與系數(shù)的關(guān)系是解題的關(guān)鍵.5、B【分析】先根據(jù)點A(3、4)是反比例函數(shù)y=圖象上一點求出k的值,求出函數(shù)的解析式,由此函數(shù)的特點對四個選項進(jìn)行逐一分析.【詳解】∵點A(3,4)是反比例函數(shù)y=圖象上一點,

∴k=xy=3×4=12,

∴此反比例函數(shù)的解析式為y=,

A、因為k=12>0,所以此函數(shù)的圖象位于一、三象限,故本選項錯誤;

B、因為k=12>0,所以在每一象限內(nèi)y隨x的增大而減小,故本選項正確;

C、因為2×(-6)=-12≠12,所以點(2、-6)不在此函數(shù)的圖象上,故本選項錯誤;

D、當(dāng)y≤4時,即y=≤4,解得x<0或x≥3,故本選項錯誤.

故選:B.【點睛】此題考查反比例函數(shù)圖象上點的坐標(biāo)特點,根據(jù)題意求出反比例函數(shù)的解析式是解答此題的關(guān)鍵.6、A【詳解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圓中同弧所對的圓周角,∴∠D=∠C=10°.∵AD為直徑,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故選A.7、C【分析】根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目,二者的比值就是其發(fā)生的概率.【詳解】解:依題意有:=1.2,

解得:n=2.

故選:C.【點睛】此題考查了利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=是解題關(guān)鍵.8、B【分析】根據(jù)合并同類項、完全平方公式及同底數(shù)冪的乘法法則進(jìn)行各選項的判斷即可.【詳解】解:A、x2+x2=2x2,故本選項錯誤;B、x﹣2x=﹣x,故本選項正確;C、x2?x3=x5,故本選項錯誤;D、(x﹣1)2=x2﹣2x+1,故本選項錯誤.故選B.【點睛】本題主要考查了合并同類項、完全平方公式及同底數(shù)冪的乘法運(yùn)算等,掌握運(yùn)算法則是解題的關(guān)鍵.9、C【分析】由于反比例函數(shù)的圖象在某象限內(nèi)隨著的增大而增大,則滿足,再解不等式求出的取值范圍即可.【詳解】∵反比例函數(shù)的圖象在某象限內(nèi),隨著的增大而增大∴解得:故選:C.【點睛】本題考查了反比例函數(shù)的圖象和性質(zhì),熟練掌握圖象在各象限的變化情況跟系數(shù)之間的關(guān)系是關(guān)鍵.10、A【分析】根據(jù)最簡二次根式的定義解答即可.【詳解】A.是最簡二次根式;B.∵=,∴不是最簡二次根式;C.∵=,∴不是最簡二次根式;D.∵,∴不是最簡二次根式;故選A.【點睛】本題考查了最簡二次根式的識別,如果二次根式的被開方式中都不含分母,并且也都不含有能開的盡方的因式,像這樣的二次根式叫做最簡二次根式.二、填空題(每小題3分,共24分)11、【分析】根據(jù)特殊角的三角函數(shù)值即可求出答案.【詳解】故答案為:.【點睛】本題主要考查特殊角的三角函數(shù)值,掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.12、15π【分析】利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】圓錐的側(cè)面積=?2π?3?5=15π.

故答案是:15π.【點睛】考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.13、【分析】先求出空白部分面積,進(jìn)而得出陰影部分面積,再利用石子落在陰影部分的概率=陰影部分面積÷正方形面積,進(jìn)而得出答案.【詳解】∵扇形ABC中空白面積=,∴正方形中空白面積=2×(2﹣)=4﹣π,∴陰影部分面積=2﹣(4﹣π)=π﹣2,∴隨機(jī)向正方形ABCD內(nèi)投擲一顆石子,石子落在陰影部分的概率=.故答案為:.【點睛】本題主要考查扇形的面積公式和概率公式,通過割補(bǔ)法,求出陰影部分面積,是解題的關(guān)鍵.14、2t【分析】根據(jù)翻折的性質(zhì),可得CE=,再根據(jù)直角三角形30度所對的直角邊等于斜邊的一半判斷出,然后求出,根據(jù)對頂角相等可得,根據(jù)平行線的性質(zhì)得到,再求出,然后判斷出是等邊三角形,根據(jù)等邊三角形的性質(zhì)表示出EF,即可解題.【詳解】由翻折的性質(zhì)得,CE=是等邊三角形,的周長=故答案為:.【點睛】本題考查折疊問題、等邊三角形的判定與性質(zhì)、含30度的直角三角形、平行線的性質(zhì)等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.15、1【分析】先根據(jù)根與系數(shù)的關(guān)系得出兩根之和與兩根之積,代入即可得出結(jié)論.【詳解】解:∵x1,x1是關(guān)于x的方程x1+3x-5=0的兩個根,

根據(jù)根與系數(shù)的關(guān)系,得,x1+x1=-3,x1x1=-5,

則x1+x1-x1x1=-3-(-5)=1,

故答案為1.【點睛】本題考查了一元二次方程的根與系數(shù)的關(guān)系,求出x1+x1=-3,x1x1=-5是解題的關(guān)鍵.16、2或1.5【分析】根據(jù)切線的性質(zhì),切線長定理得出線段之間的關(guān)系,利用勾股定理列出方程解出圓的半徑.【詳解】解:設(shè)半徑為r,∵AD、AB、BC分別與⊙O相切于E、F、G三點,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,

(7-r)2+(2r)2=52,解得r=2或1.5.故答案為:2或1.5.【點睛】本題考查了切線的性質(zhì),切線長定理,勾股定理,平行四邊形的性質(zhì),正確得出線段關(guān)系,列出方程是解題關(guān)鍵.17、【分析】連接OC,OD,OC與AD交于點E,根據(jù)圓周角定理有根據(jù)垂徑定理有:解直角即可.【詳解】連接OC,OD,OC與AD交于點E,直尺的寬度:故答案為【點睛】考查垂徑定理,熟記垂徑定理是解題的關(guān)鍵.18、75【解析】由題意得:,,∴tanA=,cosB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為75.三、解答題(共66分)19、;x=2時,原式=.【解析】先將括號內(nèi)的分式通分,再按照分式的除法法則,將除法轉(zhuǎn)化為乘法進(jìn)行計算.最后在﹣1≤x≤3中取一個使分式分母和除式不為1的數(shù)代入求值.【詳解】解:原式=.∵﹣1≤x≤3的整數(shù)有-1,1,1,2,3,當(dāng)x=﹣1或x=1時,分式的分母為1,當(dāng)x=1時,除式為1,∴取x的值時,不可取x=﹣1或x=1或x=1.不妨取x=2,此時原式=.20、(1);(2)9;(3)存在點M的坐標(biāo)為()或()使△CQM為等腰三角形且△BQM為直角三角形【分析】(1)根據(jù)拋物線經(jīng)過A、B兩點,帶入解析式,即可求得a、b的值.(2)根據(jù)PA=PB,要求四邊形PAOC的周長最小,只要P、B、C三點在同一直線上,因此很容易計算出最小周長.(3)首先根據(jù)△BQM為直角三角形,便可分為兩種情況QM⊥BC和QM⊥BO,再結(jié)合△QBM∽△CBO,根據(jù)相似比例便可求解.【詳解】解:(1)將點A(1,0),B(4,0)代入拋物線中,得:解得:所以拋物線的解析式為.(2)由(1)可知,拋物線的對稱軸為直線.連接BC,交拋物線的對稱軸為點P,此時四邊形PAOC的周長最小,最小值為OA+OC+BC=1+3+5=9.(3)當(dāng)QM⊥BC時,易證△QBM∽△CBO所以,又因為△CQM為等腰三角形,所以QM=CM.設(shè)CM=x,則BM=5-x所以所以.所以QM=CM=,BM=5-x=,所以BM:CM=4:3.過點M作NM⊥OB于N,則MN//OC,所以,即,所以,所以點M的坐標(biāo)為()當(dāng)QM⊥BO時,則MQ//OC,所以,即設(shè)QM=3t,則BQ=4t,又因為△CQM為等腰三角形,所以QM=CM=3t,BM=5-3t又因為QM2+QB2=BM2,所以(3t)2+(4t)2=(5-3t)2,解得MQ=3t=,,所以點M的坐標(biāo)為().綜上所述,存在點M的坐標(biāo)為()或()使△CQM為等腰三角形且△BQM為直角三角形【點睛】本題是一道二次函數(shù)的綜合型題目,難度系數(shù)較高,關(guān)鍵在于根據(jù)圖形化簡問題,這道題涉及到一種分類討論的思想,這是這道題的難點所在,分類討論思想的關(guān)鍵在于根據(jù)直角三角形的直角進(jìn)行分類的.21、(1);(2)證明見解析.【分析】(1)作于點,由直角三角形斜邊上的中線等于斜邊的一半可推出,,在中,利用三角函數(shù)求出BP,F(xiàn)P,在等腰三角形中,求出BE,再由勾股定理求出AB,進(jìn)而得到BC和CP,再次利用勾股定理即可求出CF的長度.(2)過作垂直于點,得矩形,首先證明,得,再證明,可推出得.【詳解】解:(1)中,為中線,,,.作于點,如圖,中,在等腰三角形中,,由勾股定理求得,(2)過作垂直于點,得矩形,∵AB∥CD∴∠MAO=∠GCO在△AMO和△CGO中,∵∠MAO=∠GCO,AO=CO,∠AOM=∠COG∴△AMO≌△CGO(ASA)∴AM=GC∵四邊形BCGP為矩形,∴GC=PB,PG=BC=AB∵AE⊥HG∴∠H+∠BAE=90°又∵∠AEB+∠BAE=90°∴∠AEB=∠H在△ABE和△GPH中,∵∠AEB=∠H,∠ABE=∠GPH=90°,AB=PG∴△ABE≌△GPH(AAS)∴BE=PH又∵CG=PB=AM∴BE=PH=PB+BH=CG+BH=AM+BH即AM+BH=BE.【點睛】本題考查了正方形和矩形的性質(zhì),三角函數(shù),勾股定理,以及全等三角形的判定和性質(zhì),正確作出輔助線,利用全等三角形對應(yīng)邊相等將線段進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵.22、(1)詳見解析;(2)詳見解析;(3)AE=1【分析】(1)由AE∥BC可直接判定結(jié)論;(2)先證△ADE≌△CDF,即可推出結(jié)論;(3)由△GAE∽△GBF,可用相似三角形的性質(zhì)求出結(jié)果.【詳解】(1)∵AE∥BC,∴△GAE∽△GBF;(2)∵AE∥BC,∴∠E=∠F,∠EAD=∠FCD,又∵點D是AC的中點,∴AD=CD,∴△ADE≌△CDF(AAS),∴AE=CF;(3)∵△GAE∽△GBF,∴,又∵AE=CF,∴3,即3,∴AE=1.【點睛】本題考查了相似三角形的判定與性質(zhì)等,解答本題的關(guān)鍵是靈活運(yùn)用相似三角形的性質(zhì).23、該單位這次共有30名員工去天水灣風(fēng)景區(qū)旅游.【分析】首先根據(jù)共支付給春秋旅行社旅游費(fèi)用27000元,確定旅游的人數(shù)的范圍,然后根據(jù)每人的旅游費(fèi)用×人數(shù)=總費(fèi)用,設(shè)該單位這次共有x名員工去天水灣風(fēng)景區(qū)旅游.即可由對話框,超過25人的人數(shù)為(x﹣25)人,每人降低20元,共降低了20(x﹣25)元.實際每人收了[1000﹣20(x﹣25)]元,列出方程求解.【詳解】設(shè)該單位這次共有名員工去天水灣風(fēng)景區(qū)旅游,因為,所以員工人數(shù)一定超過25人,可得方程,整理,得,解得:,當(dāng)時,,故舍去,當(dāng)時,,符合題意,答:該單位這次共有30名員工去天水灣風(fēng)景區(qū)旅游.24、(1)直線與相切;理由見解析;(2).【分析】(1)連接OE、OD,根據(jù)切線的性質(zhì)得到∠OAC=90°,根據(jù)三角形中位線定理得到OE∥BC,證明△AOE≌△DOE,根據(jù)全等三角形的性質(zhì)、切線的判定定理證明;(2)根據(jù)切線長定理可得DE=AE=2.5,由圓周角定理可得∠AOD=100°,然后根據(jù)弧長公式計算弧AD的長,從而可求得結(jié)論.【詳解】解:(1)直線DE與⊙O相切,理由如下:連接OE、OD,如圖,∵AC是⊙O的切線,∴AB⊥AC,∴∠OAC=90°,∵點E是AC的中點,O點為AB的中點,∴OE∥BC,∴∠1=∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論