2022-2023學(xué)年福建省龍巖市第五中學(xué)九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2022-2023學(xué)年福建省龍巖市第五中學(xué)九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2022-2023學(xué)年福建省龍巖市第五中學(xué)九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2022-2023學(xué)年福建省龍巖市第五中學(xué)九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2022-2023學(xué)年福建省龍巖市第五中學(xué)九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,正方形的邊長是3,,連接、交于點(diǎn),并分別與邊、交于點(diǎn)、,連接,下列結(jié)論:①;②;③;④當(dāng)時,.正確結(jié)論的個數(shù)為()A.1個 B.2個 C.3個 D.4個2.如圖,⊙O的半徑為5,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補(bǔ),則弦BC的長為()A. B. C. D.3.下列二次根式中,與是同類二次根式的是()A. B. C. D.4.將拋物線繞頂點(diǎn)旋轉(zhuǎn),則旋轉(zhuǎn)后的拋物線的解析式為()A. B.C. D.5.服裝店為了解某品牌外套銷售情況,對各種碼數(shù)銷量進(jìn)行統(tǒng)計(jì)店主最應(yīng)關(guān)注的統(tǒng)計(jì)量是()A.平均數(shù) B.中位數(shù) C.方差 D.眾數(shù)6.點(diǎn)P(6,-8)關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)為()A.(-6,8) B.(–6,-8) C.(8,-6) D.(–8,-6)7.如圖,l1∥l2∥l3,若,DF=6,則DE等于()A.3 B.3.2 C.3.6 D.48.如圖,在平面直角坐標(biāo)系中,與軸相切,直線被截得的弦長為,若點(diǎn)的坐標(biāo)為,則的值為()A. B. C. D.9.如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),DE∥AC.若S△BDE:S△ADE=1:2.則S△DOE:S△AOC的值為()A. B. C. D.10.某公司今年4月的營業(yè)額為2500萬元,按計(jì)劃第二季度的總營業(yè)額要達(dá)到9100萬元,設(shè)該公司5、6兩月的營業(yè)額的月平均增長率為x.根據(jù)題意列方程,則下列方程正確的是()A.B.C.D.二、填空題(每小題3分,共24分)11.如圖,利用我們現(xiàn)在已經(jīng)學(xué)過的圓和銳角三角函數(shù)的知識可知,半徑r和圓心角θ及其所對的弦長l之間的關(guān)系為,從而,綜合上述材料當(dāng)時,______.12.四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,給出下列四個條件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD從中任選兩個條件,能使四邊形ABCD為平行四邊形的選法有________種13.若順次連接四邊形ABCD各邊中點(diǎn)所得四邊形為矩形,則四邊形ABCD的對角線AC、BD之間的關(guān)系為_____.14.如圖,點(diǎn)在雙曲線上,且軸于,若的面積為,則的值為__________.15.某校開展“節(jié)約每一滴水”活動,為了了解開展活動一個月以來節(jié)約用水的情況,從八年級的400名同學(xué)中選取20名同學(xué)統(tǒng)計(jì)了各自家庭一個月節(jié)約用水情況如表,請你估計(jì)這400名同學(xué)的家庭一個月節(jié)約用水的總量大約是_____.節(jié)水量/m30.20.250.30.40.5家庭數(shù)/個2467116.如圖,,分別是邊,上的點(diǎn),,若,,,則______.17.一個圓錐的側(cè)面積是底面積的3倍,則這個圓錐側(cè)面展開圖的圓心角為__________.18.關(guān)于的一元二次方程有一個解是,另一個根為_______.三、解答題(共66分)19.(10分)如圖,在O中,,CD⊥OA于點(diǎn)D,CE⊥OB于點(diǎn)E.(1)求證:;(2)若∠AOB=120°,OA=2,求四邊形DOEC的面積.20.(6分)如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是斜邊AB的中點(diǎn),過點(diǎn)B、點(diǎn)C分別作BE∥CD,CE∥BD.(1)求證:四邊形BECD是菱形;(2)若∠A=60°,AC=,求菱形BECD的面積.21.(6分)已知:△ABC是等腰直角三角形,∠BAC=90°,將△ABC繞點(diǎn)C順時針方向旋轉(zhuǎn)得到△A′B′C,記旋轉(zhuǎn)角為α,當(dāng)90°<α<180°時,作A′D⊥AC,垂足為D,A′D與B′C交于點(diǎn)E.(1)如圖1,當(dāng)∠CA′D=15°時,作∠A′EC的平分線EF交BC于點(diǎn)F.①寫出旋轉(zhuǎn)角α的度數(shù);②求證:EA′+EC=EF;(2)如圖2,在(1)的條件下,設(shè)P是直線A′D上的一個動點(diǎn),連接PA,PF,若AB=,求線段PA+PF的最小值.(結(jié)果保留根號)22.(8分)九年級(1)班的小華和小紅兩名學(xué)生10次數(shù)學(xué)測試成績?nèi)缦卤恚ū鞩)所示:小花708090807090801006080小紅908010060908090606090現(xiàn)根據(jù)上表數(shù)據(jù)進(jìn)行統(tǒng)計(jì)得到下表(表Ⅱ):姓名平均成績中位數(shù)眾數(shù)小華80小紅8090(1)填空:根據(jù)表I的數(shù)據(jù)完成表Ⅱ中所缺的數(shù)據(jù);(2)老師計(jì)算了小紅的方差請你計(jì)算小華的方差并說明哪名學(xué)生的成績較為穩(wěn)定.23.(8分)開學(xué)初,某文具店銷售一款書包,每個成本是50元,銷售期間發(fā)現(xiàn):銷售單價時100元時,每天的銷售量是50個,而銷售單價每降低2元,每天就可多售出10個,當(dāng)銷售單價為多少元時,每天的銷售利潤達(dá)到4000元?要求銷售單價不低于成本,且商家盡量讓利給顧客.24.(8分)已知:在⊙O中,弦AC⊥弦BD,垂足為H,連接BC,過點(diǎn)D作DE⊥BC于點(diǎn)E,DE交AC于點(diǎn)F(1)如圖1,求證:BD平分∠ADF;(2)如圖2,連接OC,若AC=BC,求證:OC平分∠ACB;(3)如圖3,在(2)的條件下,連接AB,過點(diǎn)D作DN∥AC交⊙O于點(diǎn)N,若AB=3,DN=1.求sin∠ADB的值.25.(10分)已知關(guān)于的一元二次方程的一個根是1,求它的另一個根及m的值.26.(10分)如圖,在梯形中,,,,,,點(diǎn)在邊上,,點(diǎn)是射線上一個動點(diǎn)(不與點(diǎn)、重合),聯(lián)結(jié)交射線于點(diǎn),設(shè),.(1)求的長;(2)當(dāng)動點(diǎn)在線段上時,試求與之間的函數(shù)解析式,并寫出函數(shù)的定義域;(3)當(dāng)動點(diǎn)運(yùn)動時,直線與直線的夾角等于,請直接寫出這時線段的長.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】由四邊形ABCD是正方形,得到AD=BC=AB,∠DAB=∠ABC=90°,即可證明△DAP≌△ABQ,根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP;故①正確;根據(jù)相似三角形的性質(zhì)得到AO2=OD?OP,故②正確;根據(jù)△CQF≌△BPE,得到S△CQF=S△BPE,根據(jù)△DAP≌△ABQ,得到S△DAP=S△ABQ,即可得到S△AOD=S四邊形OECF;故③正確;根據(jù)相似三角形的性質(zhì)得到BE的長,進(jìn)而求得QE的長,證明△QOE∽△POA,根據(jù)相似三角形對應(yīng)邊成比例即可判斷④正確,即可得到結(jié)論.【詳解】∵四邊形ABCD是正方形,∴AD=BC=AB,∠DAB=∠ABC=90°.∵BP=CQ,∴AP=BQ.在△DAP與△ABQ中,∵,∴△DAP≌△ABQ,∴∠P=∠Q.∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正確;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP.故②正確;在△CQF與△BPE中,∵,∴△CQF≌△BPE,∴S△CQF=S△BPE.∵△DAP≌△ABQ,∴S△DAP=S△ABQ,∴S△AOD=S四邊形OECF;故③正確;∵BP=1,AB=3,∴AP=1.∵∠P=∠P,∠EBP=∠DAP=90°,∴△PBE∽△PAD,∴,∴BE,∴QE,∵∠Q=∠P,∠QOE=∠POA=90°,∴△QOE∽△POA,∴,∴,故④正確.故選:D.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解答本題的關(guān)鍵.2、C【分析】首先過點(diǎn)O作OD⊥BC于D,由垂徑定理可得BC=2BD,又由圓周角定理,可求得∠BOC的度數(shù),然后根據(jù)等腰三角形的性質(zhì),求得∠OBC的度數(shù),利用余弦函數(shù),即可求得答案.【詳解】過點(diǎn)O作OD⊥BC于D,則BC=2BD,∵△ABC內(nèi)接于⊙O,∠BAC與∠BOC互補(bǔ),∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=30°,∵⊙O的半徑為5,∴BD=OB?cos∠OBC=,∴BC=5,故選C.【點(diǎn)睛】本題考查了垂徑定理、圓周角定理、解直角三角形等,添加輔助線構(gòu)造直角三角形進(jìn)行解題是關(guān)鍵.3、A【解析】試題分析:因?yàn)?2,所以與是同類二次根式,所以A正確;因?yàn)榕c不是同類二次根式,所以B錯誤;因?yàn)?,所以與不是同類二次根式,所以B錯誤;因?yàn)椋耘c不是同類二次根式,所以B錯誤;故選A.考點(diǎn):同類二次根式4、C【分析】根據(jù)拋物線,可得頂點(diǎn)坐標(biāo)為(0,1),開口向上,拋物線繞頂點(diǎn)旋轉(zhuǎn)后,開口向下,頂點(diǎn)和拋物線形狀沒有改變,即可得到答案.【詳解】∵拋物線的頂點(diǎn)坐標(biāo)為(0,1),開口向上,∴拋物線繞頂點(diǎn)旋轉(zhuǎn)后所得的拋物線頂點(diǎn)坐標(biāo)為(0,1),開口向下,∴旋轉(zhuǎn)后的拋物線的解析式為:.故選C.【點(diǎn)睛】本題主要考查拋物線的旋轉(zhuǎn)變換,掌握拋物線的頂點(diǎn)式與旋轉(zhuǎn)變換是解題的關(guān)鍵.5、D【分析】根據(jù)題意,應(yīng)該關(guān)注哪種尺碼銷量最多.【詳解】由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故應(yīng)該關(guān)注這組數(shù)據(jù)中的眾數(shù).故選D【點(diǎn)睛】本題考查了數(shù)據(jù)的選擇,根據(jù)題意分析,即可完成。屬于基礎(chǔ)題.6、A【分析】根據(jù)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特點(diǎn):兩個點(diǎn)關(guān)于原點(diǎn)對稱時,它們的坐標(biāo)符號相反,即點(diǎn)P(x,y)關(guān)于原點(diǎn)O的對稱點(diǎn)是P′(-x,-y),可以直接選出答案.【詳解】解:根據(jù)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特點(diǎn)可得:點(diǎn)P(6,-8)關(guān)于原點(diǎn)過對稱的點(diǎn)的坐標(biāo)是(-6,8).故選:A.【點(diǎn)睛】本題主要考查了關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特點(diǎn),關(guān)鍵是熟記關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特點(diǎn):它們的坐標(biāo)符號相反.7、C【解析】試題解析:根據(jù)平行線分線段成比例定理,可得:設(shè)解得:故選C.8、B【分析】過點(diǎn)P作PH⊥AB于H,PD⊥x軸于D,交直線y=x于E,連結(jié)PA,根據(jù)切線的性質(zhì)得PC⊥y軸,則P點(diǎn)的橫坐標(biāo)為4,所以E點(diǎn)坐標(biāo)為(4,4),易得△EOD和△PEH都是等腰直角三角形,根據(jù)垂徑定理由PH⊥AB得AH=,根據(jù)勾股定理可得PH=2,于是根據(jù)等腰直角三角形的性質(zhì)得PE=,則PD=,然后利用第一象限點(diǎn)的坐標(biāo)特征寫出P點(diǎn)坐標(biāo).【詳解】解:過點(diǎn)P作PH⊥AB于H,PD⊥x軸于D,交直線y=x于E,連結(jié)PA,

∵⊙P與y軸相切于點(diǎn)C,

∴PC⊥y軸,

∴P點(diǎn)的橫坐標(biāo)為4,

∴E點(diǎn)坐標(biāo)為(4,4),

∴△EOD和△PEH都是等腰直角三角形,

∵PH⊥AB,

∴AH=,

在△PAH中,PH=,

∴PE=,

∴PD=,

∴P點(diǎn)坐標(biāo)為(4,).故選:B【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了垂徑定理.9、B【分析】依次證明和,利用相似三角形的性質(zhì)解題.【詳解】∵,

∴,

∴,

∵∥,∴,∴,

∵∥,∴,∴,

故選:B.【點(diǎn)睛】本題主要考查了相似三角形的判定及其性質(zhì)的應(yīng)用問題;解題的關(guān)鍵是靈活運(yùn)用形似三角形的判定及其性質(zhì)來分析、判斷、推理或解答.10、D【分析】分別表示出5月,6月的營業(yè)額進(jìn)而得出等式即可.【詳解】解:設(shè)該公司5、6兩月的營業(yè)額的月平均增長率為x.根據(jù)題意列方程得:.故選D.【點(diǎn)睛】考查了由實(shí)際問題抽象出一元二次方程,正確理解題意是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】如圖所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,根據(jù),設(shè)AB=l=2a,OA=r=3a,根據(jù)等量代換得出∠BOC=∠BAE=,求出BE,利用勾股定理求出AE,即可表達(dá)出,代入計(jì)算即可.【詳解】解:如圖所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,∵AO=BO,∴OC⊥AB,∴,∴設(shè)AB=l=2a,OA=r=3a,過點(diǎn)A作AE⊥OB于點(diǎn)E,∵∠B+∠BOC=90°,∠B+∠BAE=90°,∴∠BOC=∠BAE=,∴,即,解得:,由勾股定理得:,∴,故答案為:.【點(diǎn)睛】本題考查了垂徑定理以及銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練掌握垂徑定理的內(nèi)容,作出輔助線,求出AE的值.12、1.【分析】根據(jù)題目所給條件,利用平行四邊形的判定方法分別進(jìn)行分析即可.【詳解】解:由題意:①②組合可根據(jù)一組對邊平行且相等的四邊形是平行四邊形判定出四邊形ABCD為平行四邊形;③④組合可根據(jù)對角線互相平分的四邊形是平行四邊形判定出四邊形ABCD為平行四邊形;①③可證明△ADO≌△CBO,進(jìn)而得到AD=CB,可利用一組對邊平行且相等的四邊形是平行四邊形判定出四邊形ABCD為平行四邊形;①④可證明△ADO≌△CBO,進(jìn)而得到AD=CB,可利用一組對邊平行且相等的四邊形是平行四邊形判定出四邊形ABCD為平行四邊形;

∴有1種可能使四邊形ABCD為平行四邊形.故答案是1.【點(diǎn)睛】此題主要考查了平行四邊形的判定,關(guān)鍵是熟練掌握平行四邊形的判定定理.13、AC⊥BD.【分析】根據(jù)矩形的性質(zhì)、三角形的中位線定理和平行線的性質(zhì)即可得出結(jié)論.【詳解】解:如圖,設(shè)四邊形EFGH是符合題意的中點(diǎn)四邊形,則四邊形EFGH是矩形,∴∠FEH=90°,∵點(diǎn)E、F分別是AD、AB的中點(diǎn),∴EF是△ABD的中位線,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵點(diǎn)E、H分別是AD、CD的中點(diǎn),∴EH是△ACD的中位線,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案為AC⊥BD.【點(diǎn)睛】本題考查了矩形的性質(zhì)、三角形的中位線定理和平行線的性質(zhì),熟練掌握三角形中位線定理是解此題的關(guān)鍵.14、【分析】設(shè)點(diǎn)A坐標(biāo)為(x,y),由反比例函數(shù)的幾何意義得,根據(jù)的面積為,即可求出k的值.【詳解】解:設(shè)點(diǎn)A的坐標(biāo)為:(x,y),∴,∴,∴,∵反比例函數(shù)經(jīng)過第二、四象限,則,∴故答案為:.【點(diǎn)睛】本題考查了反比例函數(shù)的性質(zhì),以及反比例函數(shù)的幾何意義,解題的關(guān)鍵是熟練掌握反比例函數(shù)的幾何意義進(jìn)行解題.15、110m1.【分析】先計(jì)算這20名同學(xué)各自家庭一個月的節(jié)水量的平均數(shù),即樣本平均數(shù),然后乘以總數(shù)400即可解答.【詳解】解:20名同學(xué)各自家庭一個月平均節(jié)約用水是:(0.2×2+0.25×4+0.1×6+0.4×7+0.5×1)÷20=0.125(m1),因此這400名同學(xué)的家庭一個月節(jié)約用水的總量大約是:400×0.125=110(m1),故答案為:110m1.【點(diǎn)睛】此題考查的是根據(jù)樣本估計(jì)總體,掌握樣本平均數(shù)的公式是解決此題的關(guān)鍵.16、1【分析】證明△ADE∽△ACB,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.【詳解】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴,即,解得,AE=1,故答案為:1.【點(diǎn)睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.17、120【分析】設(shè)底面圓的半徑為r,側(cè)面展開扇形的半徑為R,扇形的圓心角為n度.根據(jù)面積關(guān)系可得.【詳解】設(shè)底面圓的半徑為r,側(cè)面展開扇形的半徑為R,扇形的圓心角為n度.由題意得S底面面積=πr2,l底面周長=2πr,S扇形=3S底面面積=3πr2,l扇形弧長=l底面周長=2πr.由S扇形=l扇形弧長×R=3πr2=×2πr×R,故R=3r.由l扇形弧長=得:2πr=解得n=120°.故答案為:120°.【點(diǎn)睛】考核知識點(diǎn):圓錐側(cè)面積問題.熟記弧長和扇形面積公式是關(guān)鍵.18、【分析】一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即把0代入方程求解可得m的值;把m的值代入一元二次方程中,求出x的值,即可得出答案.【詳解】解:把x=0代入方程(m+2)x2+3x+m2-4=0得到m2-4=0,解得:m=±2,∵m-2≠0,∴m=-2,當(dāng)m=-2時,原方程為:-4x2+3x=0解得:x1=0,x2=,則方程的另一根為x=.【點(diǎn)睛】本題主要考查對一元二次方程的解,解一元二次方程等知識點(diǎn)的理解和掌握,能求出m的值是解此題的關(guān)鍵.三、解答題(共66分)19、(1)詳見解析;(2)【分析】(1)連接OC,由AC=BC,可得∠AOC=∠BOC,又CD⊥OA,CE⊥OB,由角平分線定理可得CD=CE;(2)由∠AOB=120°,∠AOC=∠BOC,可得∠AOC=60°,又∠CDO=90°,得∠OCD=30°,可得,由勾股定理可得,可得;同理可得,進(jìn)而求出.【詳解】(1)證明:連接OC.∵AC=BC,∴∠AOC=∠BOC.∵CD⊥OA,CE⊥OB,∴CD=CE.(2)解:∵∠AOB=120°,∠AOC=∠BOC,∴∠AOC=60°.∵∠CDO=90°,∴∠OCD=30°,∵OC=OA=2,∴.∴,∴,同理可得,∴.【點(diǎn)睛】本題主要考查了圓心角與弧的關(guān)系,角平分線的性質(zhì),勾股定理以及面積計(jì)算,熟練掌握圓中的相關(guān)定理是解題的關(guān)鍵.20、(1)見解析;(2)面積=【分析】(1)先證明四邊形BECD是平行四邊形,再根據(jù)直角三角形中線的性質(zhì)可得CD=BD,再根據(jù)菱形的判定即可求解;

(2)根據(jù)圖形可得菱形BECD的面積=直角三角形ACB的面積,根據(jù)三角函數(shù)可求BC,根據(jù)直角三角形面積公式求解即可.【詳解】(1)證明:∵BE∥CD,CE∥BD,

∴四邊形BECD是平行四邊形,

∵Rt△ABC中點(diǎn)D是AB中點(diǎn),

∴CD=BD,

∴四邊形BECD是菱形;

(2)解:∵Rt△ABC中,∠A=60°,AC=,∴BC=AC=3,∴直角三角形ACB的面積為3×÷2=,∴菱形BECD的面積是.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和判定,菱形的判定,直角三角形的性質(zhì)的應(yīng)用,主要考查學(xué)生運(yùn)用定理進(jìn)行推理的能力.21、(1)①105°,②見解析;(2)【分析】(1)①解直角三角形求出∠A′CD即可解決問題,②連接A′F,設(shè)EF交CA′于點(diǎn)O,在EF時截取EM=EC,連接CM.首先證明△CFA′是等邊三角形,再證明△FCM≌△A′CE(SAS),即可解決問題.(2)如圖2中,連接A′F,PB′,AB′,作B′M⊥AC交AC的延長線于M.證明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F(xiàn)關(guān)于A′E對稱,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解決問題.【詳解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋轉(zhuǎn)角α為105°.②證明:連接A′F,設(shè)EF交CA′于點(diǎn)O.在EF時截取EM=EC,連接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′CF是等邊三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等邊三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如圖2中,連接A′F,PB′,AB′,作B′M⊥AC交AC的延長線于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F(xiàn)關(guān)于A′E對稱,∴PF=PB′,∴PA+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴PA+PF的最小值為.【點(diǎn)睛】本題屬于四邊形綜合題,考查旋轉(zhuǎn)變換相關(guān),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)以及三角形的三邊關(guān)系等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考壓軸題,難度較大.22、(1)見解析;(2)小華的方差是120,小華成績穩(wěn)定.【分析】(1)由表格可知,小華10次數(shù)學(xué)測試中,得60分的1次,得70分的2次,得1分的4次,得90分的2次,得100分的1次,根據(jù)加權(quán)平均數(shù)的公式計(jì)算小華的平均成績,將小紅10次數(shù)學(xué)測試的成績從小到大排列,可求出中位數(shù),根據(jù)李華的10個數(shù)據(jù)里的各數(shù)出現(xiàn)的次數(shù),可求出測試成績的眾數(shù);

(2)先根據(jù)方差公式分別求出兩位同學(xué)10次數(shù)學(xué)測試成績的方差,再比較大小,其中較小者成績較為穩(wěn)定.【詳解】(1)解:(1)小華的平均成績?yōu)椋海?0×1+70×2+1×4+90×2+100×1)=1,

將小紅10次數(shù)學(xué)測試的成績從小到大排列為:60,60,60,1,1,90,90,90,90,100,第五個與第六個數(shù)據(jù)為1,90,所以中位數(shù)為=85,

小華的10個數(shù)據(jù)里1分出現(xiàn)了4次,次數(shù)最多,所以測試成績的眾數(shù)為1.

填表如下:姓

名平均成績中位數(shù)眾數(shù)小華11小紅85(2)小華同學(xué)成績的方差:S2=[102+02+102+02+102+102+02+202+202+02]

=(100+100+100+100+400+400)

=120,

小紅同學(xué)成績的方差為200,

∵120<200,

∴小華同學(xué)的成績較為穩(wěn)定.【點(diǎn)睛】本題考查平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.23、銷售單價為70元時,每天的銷售利潤達(dá)到4000元,且商家盡量讓利顧客.【分析】根據(jù)“單件利潤×銷售量=總利潤”可列一元二次方程求解,結(jié)合題意取舍可得【詳解】解:設(shè)銷售單價為x元時,每天的銷售利潤達(dá)到4000元,由題意得,(x﹣50)[50+5(100﹣x)]=4000,解得x1=70,x2=90,因?yàn)槌抗馕木叩赇N售單價不低于成本,且商家盡量讓利顧客,所以x2=90不符合題意舍去,故x=70,答:銷售單價為70元時,每天的銷售利潤達(dá)到4000元,且商家盡量讓利顧客.【點(diǎn)睛】本題主要考查一元二次方程的應(yīng)用,理解題意確定相等關(guān)系,并據(jù)此列出方程是解題的關(guān)鍵.24、(1)證明見解析;(2)證明見解析;(3)sin∠ADB的值為.【分析】(1)根據(jù)等角的余角相等即可證明;(2)連接OA、OB.只要證明△OCB≌△OCA即可解決問題;(3)如圖3中,連接BN,過點(diǎn)O作OP⊥BD于點(diǎn)P,過點(diǎn)O作OQ⊥AC于點(diǎn)Q,則四邊形OPHQ是矩形,可知BN是直徑,則HQ=OP=DN=,設(shè)AH=x,則AQ=x+,AC=2AQ=2x+1,BC=2x+1,CH=AC﹣AH=2x+1﹣x=x+1,在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2即(2x+1)2=()2﹣x2+(x+1)2,解得x=3,BC=2x+1=15,CH=x+1=12求出sin∠BCH,即為sin∠ADB的值.【詳解】(1)證明:如圖1,∵AC⊥BD,DE⊥BC,∴∠AHD=∠BED=10°,∴∠DAH+∠ADH=10°,∠DBE+∠BDE=10°,∵∠DAC=∠DBC,∴∠ADH=∠BDE,∴BD平分∠ADF;(2)證明:連接OA、OB.∵OB=OC=OA,AC=BC,∴△OCB≌△OCA(SSS),∴∠OCB=∠OCA,∴OC平分∠ACB;(3)如圖3中,連接BN,過點(diǎn)O作OP⊥BD于點(diǎn)P,過點(diǎn)O作OQ⊥AC于點(diǎn)Q.則四邊形OPHQ是矩形,∵D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論