河北省承德市興隆縣市級名校2023-2024學年十校聯考最后數學試題含解析_第1頁
河北省承德市興隆縣市級名校2023-2024學年十校聯考最后數學試題含解析_第2頁
河北省承德市興隆縣市級名校2023-2024學年十校聯考最后數學試題含解析_第3頁
河北省承德市興隆縣市級名校2023-2024學年十校聯考最后數學試題含解析_第4頁
河北省承德市興隆縣市級名校2023-2024學年十校聯考最后數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省承德市興隆縣市級名校2023-2024學年十校聯考最后數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,以O為圓心的圓與直線交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π2.若關于x的一元二次方程x(x+2)=m總有兩個不相等的實數根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<13.下列計算正確的是()A.(a2)3=a6 B.a2?a3=a6 C.a3+a4=a7 D.(ab)3=ab34.下列各組數中,互為相反數的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|5.如圖,點A、B、C、D在⊙O上,∠AOC=120°,點B是弧AC的中點,則∠D的度數是()A.60° B.35° C.30.5° D.30°6.如圖,AB是⊙O的直徑,點E為BC的中點,AB=4,∠BED=120°,則圖中陰影部分的面積之和為()A.1 B. C. D.7.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<108.的相反數是()A. B. C.3 D.-39.下列運算正確的是()A. B.C. D.10.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關于OA的對稱點Q恰好落在線段MN上,點P關于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知點C為反比例函數上的一點,過點C向坐標軸引垂線,垂足分別為A、B,那么四邊形AOBC的面積為___________.12.如圖,在平面直角坐標系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后頂點D恰好落在邊OC上的點F處.若點D的坐標為(10,8),則點E的坐標為.13.若代數式x2﹣6x+b可化為(x+a)2﹣5,則a+b的值為____.14.如圖,點A、B、C是⊙O上的三點,且△AOB是正三角形,則∠ACB的度數是。15.已知直線與拋物線交于A,B兩點,則_______.16.某排水管的截面如圖,已知截面圓半徑OB=10cm,水面寬AB是16cm,則截面水深CD為_____.三、解答題(共8題,共72分)17.(8分)(2016山東省煙臺市)某中學廣場上有旗桿如圖1所示,在學習解直角三角形以后,數學興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,光線與水平面的夾角為72°,1米的豎立標桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結果精確到0.1米).(參考數據:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)18.(8分)如圖,在平面直角坐標系xOy中,函數的圖象與直線y=2x+1交于點A(1,m).(1)求k、m的值;(2)已知點P(n,0)(n≥1),過點P作平行于y軸的直線,交直線y=2x+1于點B,交函數的圖象于點C.橫、縱坐標都是整數的點叫做整點.①當n=3時,求線段AB上的整點個數;②若的圖象在點A、C之間的部分與線段AB、BC所圍成的區(qū)域內(包括邊界)恰有5個整點,直接寫出n的取值范圍.19.(8分)如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點E從點D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設運動時間為t(秒),將線段CE繞點C順時針旋轉一個角α(α=∠BCD),得到對應線段CF.(1)求證:BE=DF;(2)當t=秒時,DF的長度有最小值,最小值等于;(3)如圖2,連接BD、EF、BD交EC、EF于點P、Q,當t為何值時,△EPQ是直角三角形?20.(8分)某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫為20℃,接通電源后,水溫和時間的關系如下圖所示,回答下列問題:(1)分別求出當0≤x≤8和8<x≤a時,y和x之間的關系式;(2)求出圖中a的值;(3)李老師這天早上7:30將飲水機電源打開,若他想再8:10上課前能喝到不超過40℃的開水,問他需要在什么時間段內接水.21.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.22.(10分)徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號”高鐵A與“復興號”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?23.(12分)已知,關于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判斷此方程根的情況;(2)若x=2是該方程的一個根,求m的值.24.某家電銷售商場電冰箱的銷售價為每臺1600元,空調的銷售價為每臺1400元,每臺電冰箱的進價比每臺空調的進價多300元,商場用9000元購進電冰箱的數量與用7200元購進空調數量相等.(1)求每臺電冰箱與空調的進價分別是多少?(2)現在商場準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售利潤為Y元,要求購進空調數量不超過電冰箱數量的2倍,總利潤不低于16200元,請分析合理的方案共有多少種?(3)實際進貨時,廠家對電冰箱出廠價下調K(0<K<150)元,若商場保持這兩種家電的售價不變,請你根據以上信息及(2)中條件,設計出使這100臺家電銷售總利潤最大的進貨方案.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】過點作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.2、C【解析】

將關于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關鍵.3、A【解析】分析:根據冪的乘方、同底數冪的乘法、積的乘方公式即可得出答案.詳解:A、冪的乘方法則,底數不變,指數相乘,原式計算正確;B、同底數冪的乘法,底數不變,指數相加,原式=,故錯誤;C、不是同類項,無法進行加法計算;D、積的乘方等于乘方的積,原式=,計算錯誤;故選A.點睛:本題主要考查的是冪的乘方、同底數冪的乘法、積的乘方計算法則,屬于基礎題型.理解各種計算法則是解題的關鍵.4、A【解析】

根據相反數的定義,對每個選項進行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數,正確;B、(﹣1)2=1,故錯誤;C、2與互為倒數,故錯誤;D、2=|﹣2|,故錯誤;故選:A.【點睛】本題考查了相反數的定義,解題的關鍵是掌握相反數的定義.5、D【解析】

根據圓心角、弧、弦的關系定理得到∠AOB=∠AOC,再根據圓周角定理即可解答.【詳解】連接OB,∵點B是弧的中點,∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【點睛】此題考查了圓心角、弧、弦的關系定理,解題關鍵在于利用好圓周角定理.6、C【解析】連接AE,OD,OE.∵AB是直徑,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等邊三角形.∴∠A=60°.又∵點E為BC的中點,∠AED=90°,∴AB=AC.∴△ABC是等邊三角形,∴△EDC是等邊三角形,且邊長是△ABC邊長的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE圍成的部分的面積=和弦DE圍成的部分的面積.∴陰影部分的面積=.故選C.7、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據知求出CG的長是解題的關鍵.8、B【解析】先求的絕對值,再求其相反數:根據數軸上某個數與原點的距離叫做這個數的絕對值的定義,在數軸上,點到原點的距離是,所以的絕對值是;相反數的定義是:如果兩個數只有符號不同,我們稱其中一個數為另一個數的相反數,特別地,1的相反數還是1.因此的相反數是.故選B.9、D【解析】

由去括號法則:如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反;完全平方公式:(a±b)2=a2±2ab+b2;單項式與單項式相乘,把他們的系數,相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式進行計算即可.【詳解】解:A、a-(b+c)=a-b-c≠a-b+c,故原題計算錯誤;

B、(x+1)2=x2+2x+1≠x2+1,故原題計算錯誤;

C、(-a)3=≠,故原題計算錯誤;

D、2a2?3a3=6a5,故原題計算正確;

故選:D.【點睛】本題考查了整式的乘法,解題的關鍵是掌握有關計算法則.10、A【解析】試題分析:利用軸對稱圖形的性質得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

解:由于點C為反比例函數上的一點,則四邊形AOBC的面積S=|k|=1.故答案為:1.12、(10,3)【解析】

根據折疊的性質得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后設EC=x,則EF=DE=8-x,CF=10-6=4,根據勾股定理列方程求出EC可得點E的坐標.【詳解】∵四邊形AOCD為矩形,D的坐標為(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折疊,使D落在BC上的點F處,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10?6=4,設EC=x,則DE=EF=8?x,在Rt△CEF中,EF2=EC2+FC2,即(8?x)2=x2+42,解得x=3,即EC的長為3.∴點E的坐標為(10,3).13、1【解析】

根據題意找到等量關系x2﹣6x+b=(x+a)2﹣5,根據系數相等求出a,b,即可解題.【詳解】解:由題可知x2﹣6x+b=(x+a)2﹣5,整理得:x2﹣6x+b=x2+2ax+a2-5,即-6=2a,b=a2-5,解得:a=-3,b=4,∴a+b=1.【點睛】本題考查了配方法的實際應用,屬于簡單題,找到等量關系求出a,b是解題關鍵.14、30°【解析】試題分析:圓周角定理:同弧或等弧所對的圓周角相等,均等于所對圓心角的一半.∵△AOB是正三角形∴∠AOB=60°∴∠ACB=30°.考點:圓周角定理點評:本題屬于基礎應用題,只需學生熟練掌握圓周角定理,即可完成.15、【解析】

將一次函數解析式代入二次函數解析式中,得出關于x的一元二次方程,根據根與系數的關系得出“x+x=-=,xx==-1”,將原代數式通分變形后代入數據即可得出結論.【詳解】將代入到中得,,整理得,,∴,,∴.【點睛】此題考查了二次函數的性質和一次函數的性質,解題關鍵在于將一次函數解析式代入二次函數解析式16、4cm.【解析】

由題意知OD⊥AB,交AB于點C,由垂徑定理可得出BC的長,在Rt△OBC中,根據勾股定理求出OC的長,由CD=OD-OC即可得出結論.【詳解】由題意知OD⊥AB,交AB于點E,∵AB=16cm,∴BC=AB=×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴OC=(cm),∴CD=OD-OC=10-6=4(cm)故答案為4cm.【點睛】本題考查的是垂徑定理的應用,根據題意在直角三角形運用勾股定理列出方程是解答此題的關鍵.三、解答題(共8題,共72分)17、13.1.【解析】試題分析:如圖,作CM∥AB交AD于M,MN⊥AB于N,根據=,可求得CM的長,在RT△AMN中利用三角函數求得AN的長,再由MN∥BC,AB∥CM,判定四邊形MNBC是平行四邊形,即可得BN的長,最后根據AB=AN+BN即可求得AB的長.試題解析:如圖作CM∥AB交AD于M,MN⊥AB于N.由題意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN∥BC,AB∥CM,∴四邊形MNBC是平行四邊形,∴BN=CM=,∴AB=AN+BN=13.1米.考點:解直角三角形的應用.18、(1)m=3,k=3;(2)①線段AB上有(1,3)、(2,5)、(3,7)共3個整點,②當2≤n<3時,有五個整點.【解析】

(1)將A點代入直線解析式可求m,再代入,可求k.(2)①根據題意先求B,C兩點,可得線段AB上的整點的橫坐標的范圍1≤x≤3,且x為整數,所以x取1,2,3.再代入可求整點,即求出整點個數.②根據圖象可以直接判斷2≤n<3.【詳解】(1)∵點A(1,m)在y=2x+1上,∴m=2×1+1=3.∴A(1,3).∵點A(1,3)在函數的圖象上,∴k=3.(2)①當n=3時,B、C兩點的坐標為B(3,7)、C(3,1).∵整點在線段AB上∴1≤x≤3且x為整數∴x=1,2,3∴當x=1時,y=3,當x=2時,y=5,當x=3時,y=7,∴線段AB上有(1,3)、(2,5)、(3,7)共3個整點.②由圖象可得當2≤n<3時,有五個整點.【點睛】本題考查反比例函數和一次函數的交點問題,待定系數法,以及函數圖象的性質.關鍵是能利用函數圖象有關解決問題.19、(1)見解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒時,△EPQ是直角三角形【解析】

(1)由∠ECF=∠BCD得∠DCF=∠BCE,結合DC=BC、CE=CF證△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延長線于E′.當點E運動至點E′時,由DF=BE′知此時DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°時,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°時,由菱形ABCD的對角線AC⊥BD知EC與AC重合,可得DE=6.【詳解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四邊形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如圖1,作BE′⊥DA交DA的延長線于E′.當點E運動至點E′時,DF=BE′,此時DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴設AE′=x,則BE′=2x,∴AB=x=6,x=6,則AE′=6∴DE′=6+6,DF=BE′=12,時間t=6+6,故答案為:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①當∠EQP=90°時,如圖2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②當∠EPQ=90°時,如圖2②,∵菱形ABCD的對角線AC⊥BD,∴EC與AC重合,∴DE=6,∴t=6秒,綜上所述,t=6秒或6秒時,△EPQ是直角三角形.【點睛】此題是菱形與動點問題,考查菱形的性質,三角形全等的判定定理,等腰三角形的性質,最短路徑問題,注意(3)中的直角沒有明確時應分情況討論解答.20、(1)當0≤x≤8時,y=10x+20;當8<x≤a時,y=;(2)40;(3)要在7:50~8:10時間段內接水.【解析】

(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,即可求得k1、b的值,從而得一次函數的解析式;當8<x≤a時,設y=,將(8,100)的坐標代入y=,求得k2的值,即可得反比例函數的解析式;(2)把y=20代入反比例函數的解析式,即可求得a值;(3)把y=40代入反比例函數的解析式,求得對應x的值,根據想喝到不低于40℃的開水,結合函數圖象求得x的取值范圍,從而求得李老師接水的時間范圍.【詳解】解:(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,可求得k1=10,b=20∴當0≤x≤8時,y=10x+20.當8<x≤a時,設y=,將(8,100)的坐標代入y=,得k2=800∴當8<x≤a時,y=.綜上,當0≤x≤8時,y=10x+20;當8<x≤a時,y=(2)將y=20代入y=,解得x=40,即a=40.(3)當y=40時,x==20∴要想喝到不低于40℃的開水,x需滿足8≤x≤20,即李老師要在7:38到7:50之間接水.【點睛】本題主要考查了一次函數及反比例函數的應用題,是一個分段函數問題,分段函數是在不同區(qū)間有不同對應方式的函數,要特別注意自變量取值范圍的劃分,既要科學合理,又要符合實際.21、(1)3+【解析】

(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設AE=x,則ME=BM=2x,AM=3x,根據AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.

(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【點睛】本題考查全等三角形的判定和性質、直角三角形斜邊中線定理,等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.22、A車行駛的時間為3.1小時,B車行駛的時間為2.1小時.【解析】

設B車行駛的時間為t小時,則A車行駛的時間為1.4t小時,根據題意得:﹣=80,解分式方程即可,注意驗根.【詳解】解:設B車行駛的時間為t小時,則A車行駛的時間為1.4t小時,根據題意得:﹣=80,解得:t=2.1,經檢驗,t=2.1是原分式方程的解,且符合題意,∴1.4t=3.1.答:A車行駛的時間為3.1小時,B車行駛的時間為2.1小時.【點睛】本題考核知識點:列分式方程解應用題.解題關鍵點:根據題意找出數量關系,列出方程.23、(1)證明見解析;(2)m=2或m=1.【解析】

(1)由△=(-m)2-4×1×(m2-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論