工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件 Chapter 9 dAlembert Principle and Virtual Displacement Principle、Chapter 10 Vibrations_第1頁
工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件 Chapter 9 dAlembert Principle and Virtual Displacement Principle、Chapter 10 Vibrations_第2頁
工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件 Chapter 9 dAlembert Principle and Virtual Displacement Principle、Chapter 10 Vibrations_第3頁
工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件 Chapter 9 dAlembert Principle and Virtual Displacement Principle、Chapter 10 Vibrations_第4頁
工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件 Chapter 9 dAlembert Principle and Virtual Displacement Principle、Chapter 10 Vibrations_第5頁
已閱讀5頁,還剩50頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Chapter9d’AlembertPrincipleandVirtualDisplacementPrinciple§9.4Constraint,virtualdisplacement,virtualwork§9.5Principleofvirtualdisplacement§9.1InertialForceandd’AlembertPrincipleofaParticle§9.2d’AlembertPrincipleofaSystemofParticles§9.3ReductionofaSystemofInertialForcesofaRigidBodyMainContentsInthischapter,wewilldiscussd’Alembertprinciple,itprovidesageneralmethodtosolvethekineticproblemofaparticleandasystemofparticles,themethodisthatthemethodsofstaticsareappliedtosolvekineticsproblems,thuskineticproblemscanbetransformedformallytoanequivalentstaticproblems,theycanbesolvedbytheoremofequilibrium.Thusthismethodiscalledthekinetic-staticmethod.Applyingthekinetic-staticmethodwecandeterminethemotion,forexampleaccelerationangularacceleration;canalsodeterminetheforce.D’Alembert’sPrincipleApplyingNewtonsecondlaw,wehave§9.1Inertialforceandd’AlembertprincipleofaparticleAssumingmassofaparticleis,accelerateis,activeforceactingontheparticleis,constraintforceis,showninfigure.AboveequationistransposedandwrittenasMaking

Wehave

hasthedimensionofforce,iscalledtheinertialforceofparticle:itsmagnitudeisequaltotheproductofmassandaccelerationofparticle,itsdirectioniscontrarytothedirectionofparticleacceleration.Theactiveforce,constraintforceandvirtualinertialforceactingontheparticlecomposedformallyequilibratedsystemofforces,thisisd’Alembertprincipleofaparticle.OlθExamole

9-1§9.1Inertialforceandd’AlembertprincipleofaparticleShowninfigure,aconicalpendulum.Aballofmassm=0.1kgtiesaropeoflengthl=0.3m,oneendoftheropetiestoafixedpointO,andtheanglewiththeleadstraightlineisθ=60o.Ifthesmallballmakeuniformcircularmotioninthehorizontalplane,determinethevelocityoftheballvandthemagnitudeoftensionFoftherope.OlθenetebmgF*Example9-1FSolution:choosethesmallballastheparticletostudy.Theparticlemakesuniformcircularmotion,onlyhavenormalacceleration,theforcesactingontheparticleincludesgravitymg,pullingforceFofropeandnormalinertialforceF*,showninfigure.Accordingtod’Alembertprinciple,thethreeforcescomposedformallyequilibratedsystem,thatisTakingtheprojectionformulaofaboveequationinnaturalaxis,wehave:§9.1InertialforceandD’Alembert’sprincipleofaparticleExample

9-1OlθenetebmgF*FSolutionis:§9.1InertialforceandD’Alembert’sprincipleofaparticleAssumingssystemofparticlescomposedofnparticles,massofanyparticleiis,

accelerationis,allforcesactingontheparticleisdividedintoresultantforceofactiveforce,resultantforceofconstraintforce,theparticleisimaginarilyplusitsinertialforce,accordingtod’Alembertprincipleofaparticle,wehaveAboveequationshows,theactiveforce,constraintforceanditsinertialforceactingoneveryparticleofthesystemcomposedformallyequilibratedsystemofforces,thisisd’Alembertprincipleofasystemofparticles.Thisshows,externalforce,internalforceanditsinertialforceactingoneveryparticleofthesystemcomposedformallyequilibratedsystemofforces.§9.1InertialforceandD’Alembert’sprincipleofaparticleAllforcesactingtheithparticlearedividedintoresultantforceofexternalforce,

resultantforceofinternalforce,andaboveequationcanbewrittenasBystaticsweknowthatnecessaryandsufficientconditionofequilibriumofspacialgeneralforcesystemisthattheprincipalvectoroftheforcesystemandtheprincipalmomentaboutanypointisequaltozero,thatisAboveequationshows,externalforceactingonsystemofparticlesandinertialforcevirtualaddingoneveryparticlecomposeformallyequilibratedsystemofforces,thisisanotherrepresentationofd’Alembertprincipleofasystemofparticles.§9.2D’Alembert’sprincipleofasystemofparticlesSinceInternalforcesofthesystemofparticlesalwaysexistinpairs

,

andisequalinmagnitudeandoppositeindirection,andcollinear,

thenwehaveand

,henceInstatics,

iscalledtheprincipalvector,

istheprincipalmomentaboutpointO,nowiscalledtheprincipalvectorofinertialforcesystem,

istheprincipalmomentofinertialforcesystemaboutpointO.AccordingtoD’Alembert’sprincipleofasystemofparticles,thisisformallyaequilibratedsystemofforces,

hencewecanapplymethodofstaticsforsolvingvariousequilibratedforcesystemtosolvekineticproblem.§9.2D’Alembert’sprincipleofasystemofparticlesOABrExample

9-2Showninfigure,theradiusofpulleyisr,massmuniformlydistributedintherim,canrotatearoundthehorizontalaxis.Bothendsofthesoftropeacrosstherimhangheavybodyofmass

m1andm2,andm1>m2.Neglectweightofrope,thereisnorelativeslidingbetweenropeandpulley,neglectbearingfriction.Determinetheaccelerationofheavybody.§9.2D’Alembert’sprincipleofasystemofparticlesOABryExample

9-2aam1gmgm2gFNSolution:choosepulleyandthetwoheavybodiesasthesystemofparticlestobestudied.Theexternalforcesactingonthesystemincludegravitym1g,m2g,mgandbearingconstraintforces

FN.Eachparticleofthesystemisvirtuallyaddedinertialforce,wecanapplyd’Alembertprinciple.Weknowm1>m2,thenthedirectionofaccelerationaofheavybodyshowninfigure.Thedirectionofinertialforceofheavybodyisoppositetothedirectionofaccelerationa,magnitudearerespectively:§9.2D’Alembert’sprincipleofasystemofparticlesorExample

9-2OABraam1gmgm2gFNymiApplyingequationofmomentofforceaboutrotatingaxis,weobtain

§9.2D’Alembert’sprincipleofasystemofparticlesMassofeachpointonpulleyedgeismi,magnitudeoftangentialinertialforceis,directionisalongtherimtangentline,pointasshowninfigure.Whenthereisnorelativeslidingbetweenropeandpulley,;magnitudeofnormalinertialforceis,directionisalongradiusanddeparturefromthecenter.

sinceSolutionisExample

9-2OABraam1gmgm2gFNymi§9.2D’Alembert’sprincipleofasystemofparticles§9.3ReductionofasystemofinertialforcesofarigidbodyThisexpressionisestablishedaboutanymotionofanysystemofparticles,alsoappliestotherigidbodythatmakestranslation,fixedaxisrotationandplanemotion.Inthefollowingweintroducereductionofasystemofinertialforcesinthreecommoncases.Applyingd’Alembertprincipleofasystemofparticlestosolvekineticproblemofthesystem,

eachparticleofthesystemisaddeditsinertialforce,

theseinertialforcesformasystemofforces,

whichiscalledinertialforcesystem.Ifusingsimplifiedtheoryofforcesysteminstatics,

todeterminetheprincipalvectorandtheprincipalmomentintheinertialforcesystem,

substituteinertialforceaddedtoeachparticlewhenwespecificallysolve,

itwillbringconveniencetosolveproblem.Inthefollowingweonlydiscussreductionofinertialforcesystemintranslationofrigidbody,

fixedaxisrotationandplanemotion.representstheprinciplevectorofinertialforcesystem,

accordingtoandtheoremofmotionofmasscenter,

wehave1.RigidbodyintranslationRigidbodyisintranslation,

ateveryinstantaccelerationofanyparticleiinrigidbodyisthesameasaccelerationofmasscenter,

here,

inertialforcesystemofrigidbodydistributesinfigure,

arbitrarilychooseapointOassimplifiedcenter,

representstheprincipalmoment,

wehaveWhenrigidbodyisintranslation,theprinciplemomentofinertialforceaboutarbitrarypointisgenerallynotequaltozero.Ifchoosemasscenterassimplifiedcenter,itsprincipalmomentiszero,simplifiedasaresultantforce.Henceweconclude:inertialforcesystemoftranslationalrigidbodycanbesimplifiedtoresultantforcethroughmasscenter,itsmagnitudeisequaltotheproductofmassofrigidbodyandacceleration,thedirectionofresultantforceisoppositetothedirectionofacceleration.§9.3ReductionofasystemofinertialforcesofarigidbodyWhere,

isradiusvectorfrommasscenterCtosimplifiedcenterO,theprinciplemomentisgenerallynotequaltozero.IfchoosemasscenterCassimplifiedcenter,representtheprincipalmoment,then,

wehave2.Fixedaxisrotationofarigidbody§9.3ReductionofasystemofinertialforcesofarigidbodyInertialforceofparticlecanbedividedintotangentialinertialforceandnormalinertialforce

,andtheirdirectionsshowninfigure,magnitudearerespectivelyWhenrigidbodyisinfixedaxisrotation,assumingangularvelocityofrigidbodyis,angularaccelerationis,massofanyparticleinrigidbodyis,thedistancetorotatingaxisis,theninertialforceofanyparticleinrigidbodyis.Forsimplicity,arbitrarilychooseapointO

onrotatingaxisassimplifiedcenter,establishrectangularcoordinatesystemshowninfigure,coordinatesoftheparticleisIftherigidbodyhasaplaneofmasssymmetryandtheplaneisverticaltotherotatingaxisz,andthesimplifiedcenter

ischosentobetheintersectionpointofthisplanewiththerotatingaxisz,thenMomentofinertialforcesystemaboutaxisz

is

Sincenormalinertialforceofeachparticlepassthroughaxisz,

wehave§9.3Reductionofasystemofinertialforcesofarigidbody3.Rigidbodyinplanemotion(paralleltothemasssymmetryplane)§9.3ReductionofasystemofinertialforcesofarigidbodyInengineering,rigidbodyinplanemotionoftenhasmasssymmetryplane,andparalleltotheplanemotion,nowonlyinthiscasewediscussreductionofasystemofinertialforces.Similartorotationofrigidbodyaroundfixedaxis,rigidbodyisinplanemotion,spaceforcesystemcomposedofinertialforcesofeachparticle,canbesimplifiedtoplaneforcesysteminthemasssymmetryplane.Chooseplanefigureinthemasssymmetrypaneasshowninfigure.Bykinematicsweknow,motionofplanefigurecanbedividedintotranslationwiththebasepointandrotationaroundthebasepoint.NowchoosemasscenterCasthebasepoint,assumingtheaccelerationofmasscenteris,angularvelocityofrotationaroundmasscenteris,angularaccelerationis,similartorotationofrigidbodyaroundfixedaxis,nowtheprincipalmomentofreductionofasystemofinertialforcestomasscenterCisWhere

isthemassmomentofinertiaoftherigidbodyabouttheaxiswhichpassesthroughmasscenterandisverticaltothemasssymmetryplane.§9.3ReductionofasystemofinertialforcesofarigidbodySoweconclude:

rigidbodyhavethemasssymmetryplane,

whenmovingparalleltotheplane,

asystemofinertialforcesofrigidbodyisreducedtoaforceandacoupleintheplane.Theforcepassesthroughmasscenter,

itsmagnitudeisequaltotheproductofmassofrigidbodyandaccelerationofmasscenter,

itsdirectionisoppositetothedirectionofaccelerationofmasscenter;

momentofthecoupleisequaltotheproductofthemassmomentofinertiaoftherigidbodyabouttheaxiswhichpassesthroughmasscenterandisverticaltothemasssymmetryplaneandangularacceleration,

rotatingdirectionisoppositetoangularacceleration.xyωm1gm2gCOhφExample

9-3§9.3ReductionofasystemofinertialforcesofarigidbodyShowninfigure,massofstatorofelectricmotorism1,mountedonahorizontalbase.ThedistancebetweenrotatingaxisOandhorizontalplaneish,and

massofrotorism2,itsmasscenterisC,eccentricdistanceOC=e,whenmotionbegins,masscenterCisatthelowestposition.Rotorrotateswithconstantangularvelocityω,determinetheconstraintforceofthebaseactingontheelectricmotor.Example

9-3xyωm1gm2gCOhφFyFxMAF*Solution:choosethewholemotorasobjecttobestudied.Theforcesincludegravitym1gandm2g,constraintforceofbaseandgroundscrewactingontheelectricmotorsimplifiedtopointAasacoupleMandaforceF(showninfigureFxandFy).Thesystemofparticlesisaddedtoinertialforce.RotoruniformlyrotatesaboutfixedaxisOwithangularvelocityω,thesystemofinertialforceisreducedaforcethroughpointO,magnitudeisItsdirectionisoppositetoaccelerationaCofmasscenterC.SinceaCisalongOCandpointstocenterO,

F*isalongOCanddepartsfrompointO.§9.3ReductionofasystemofinertialforcesofarigidbodyExample

9-3xyωm1gm2gCOhφFyFxMAF*Accordingtod’Alembertprinciple,activeforce,constraintforceandinertialforceactingonthesystemofparticlesformallycomposeequilibriumforcesystem,wecanwriteequilibriumequation:Sincerotoruniformlyrotates,φ=ωt

,substitutingitintoaboveequations,weobtain:§9.3ReductionofasystemofinertialforcesofarigidbodymAgmgFABCExample

9-4MassofhomogeneousdiscismA,radiusisr.Lengthofslenderrodisl=2r,massism.PointAofrodendhingedsmoothlytowheelcenter,showninfigure.IfpointAsufferedahorizontalpullingforceF,makewheelrollalonghorizontalplane.DeterminethemagnitudeofforceF,whenendBofrodjustlefttheground.Inordertoensurepurerolling,determinecoefficientofstaticslidingfrictionbetweenthewheelandtheground.§9.3ReductionofasystemofinertialforcesofarigidbodyBCmgAF*CFAxFAyamAgmgFABCExample

9-4F*AF*CM*Accordingtokinetic-staticmethod,wewriteequationSolutionis

§9.3ReductionofasystemofinertialforcesofarigidbodySolution:whenslenderrodleftthegrounditisstillintranslation,andconstraintforceofgroundisequaltozero,assumingitsaccelerationisa.Chooserodasobjecttobestudied,theforcesactingonrodandaddinginertialforceasshowninfigure,where

Theforcesactingonthewholesystemandaddinginertialforcesasshowninfigure,whereAccordingtoequationweobtainmAgmgFABCF*AF*CM*FNFsExample

9-4Frictionofground

Inordertodeterminefriction,choosethewheelasobjecttobestudied.Solutionis

§9.3ReductionofasystemofinertialforcesofarigidbodyApplyingequationweobtainAmAgFFNF*AM*FsExample

9-4Thus,coefficientoffrictionofground§9.3ReductionofasystemofinertialforcesofarigidbodyAFNF*AF*CmAgmgFBCM*FsThenchoosethewholesystemasobjecttobestudied,

byequation,weobtainmAgFAFNF*AM*FsPrincipleofvirtualdisplacement:§9.4Constraint,virtualdisplacement,virtualworkToestablishtheequilibriumconditionsforthesystemofmasspointsindependentoftheNewtonianmechanicssystem.Newtoniansystemofmechanics:Vectormechanics,whichdescribesmechanicalquantitiesthatarerepresentedbyvectors,suchasvectordiameter,velocity,acceleration,angularvelocityandangularacceleration.Analyticalmechanicssystem:Scalarmechanics,whichdescribesphysicalquantitiesasscalars,suchasgeneralizedcoordinates,energyandwork.Theprincipleofvirtualdisplacementisbasedonanalyticalmechanicstoestablishthesufficientconditionsfortheequilibriumofthesystem,whichhasawidersignificancethantheequilibriumconditionsestablishedbyNewtonianmechanics.1.Constraintsandtheirclassification(1)Therestrictionsonthemotionofanobjectarecalledconstraints.Expressedasamathematicalequation,whichiscalledconstraintequation.Forexample:xφOyM(x,y)ιPlanependulumconstraintequation§9.4Constraint,virtualdisplacement,virtualwork2.Classificationofconstraints§9.4Constraint,virtualdisplacement,virtualworkGeometricconstraint:restrictonlythegeometricpositionofaparticle.Motionconstraint:theconstraintequationcontainsthederivativeoftheparticlecoordinates(withrespecttotime).Steadyconstraint:theconstraintisindependentoftime,i.e.,theconstraintequationdoesnotcontaintimet.Unsteadyconstraint:

theconstraintisdependentoftime,i.e.,thetimetisincludedintheconstraintequation.Holonomicconstraint:

includinggeometricconstraintsandmotionconstraintsthatcanbereducedtogeometricconstraints.Nonholonomicconstraint:amotionconstraintcannotbereducedtoageometricconstraint.3.

VirtualdisplacementAtacertaininstant,anyinfinitesimaldisplacementthattheparticlesystemmayachieveundertheconditionsallowedbyconstraintsiscalledthevirtualdisplacementoftheparticlesystem(atthatinstant).Thevirtualdisplacementcanbeeitheralineardisplacementoranangulardisplacement.Usually,thevariationalsymbolδisusedtorepresentvirtualdisplacement.Inthefollowingtwoexamples,δφ,δrAand

δrBareallvirtualdisplacement.xφOyMδφδs(+)xBAOyMFδrAδrBδφ§9.4Constraint,virtualdisplacement,virtualwork4.Differencebetweenvirtualdisplacementandrealdisplacement

Realdisplacementisthetruedisplacementachievedbyaparticlesystemwithinacertainperiodoftime,whichisnotonlyrelatedtoconstraints,butalsototime,activeforce,andinitialconditionsofmotion.Realdisplacementisactuallyoccurring;Virtualdisplacementmayoccurundertheconditionsallowedbyconstraintsandisrelatedtoconstraints.§9.4Constraint,virtualdisplacement,virtualwork

Theworkdonebyaforceinavirtualdisplacementiscalledvirtualwork,denotedasxBAOyMFδrAδrBδφ§9.4Constraint,virtualdisplacement,virtualworkAsshowninthefigure,thevirtualworkofFisF?δrB

,which

isnegativework;thevirtualworkofMisM?δφ,

whichispositivework.5.Virtualwork6.IdealconstraintInanyvirtualdisplacementoftheparticlesystem,ifthesumofthevirtualworkdonebyallconstraintsisequaltozero,thisconstraintiscalledanidealconstraint.(3)Purerollingofarigidbodyonaroughsurface(1)SmoothsupportsurfaceδrFN(2)SmoothhingesFNδrFFNC(4)weightlessrigidrod(5)Non-extendableflexiblecable(6)Fixedend§9.4Constraint,virtualdisplacement,virtualworkmiFiFNiδriThenIdealconstraint§9.5Principleofvirtualdisplacement

Letasystemofparticlesinrestequilibriumconsistofn

particles,wherethemassofanyparticle

iismi,andtheresultantforceFioftheactiveforceandtheresultantforceFNioftherestrainingforceactingonthisparticle,ifitisgivenanimaginarydisplacementδri.Asufficientnecessaryconditionforequilibriumofasystemofparticleswithidealconstraintsisthatthesumoftheimaginaryworkdoneinanyvirtualdisplacementbyalltheactiveforcesactingonthesystemofparticlesisequaltozero,i.e.

orTheaboveconclusioniscalledtheprincipleofvirtualdisplacement,alsoknownastheprincipleofvirtualwork.§9.5PrincipleofvirtualdisplacementAnalyticalformula:

TheEnd

Chapter10Vibrations

MainContents

§10.1

UndampedFreeVibration§10.2

UndampedForcedVibration§10.3ViscousDampedFreeVibration§10.4

ViscousDampedForcedVibrationVibration

istheperiodicmotionofabodyorsystemofconnectedbodiesdisplacedfromapositionofequilibrium.

Vibrationbelongstothesecondcategoryofkineticproblems

-solvemotionproblemsthroughknownactiveforces

Researchmethodofvibrationproblems

Motionanalysis;

Forceanalysis;

Selecttheappropriatekinetictheorem;

Establishandsovledifferentialequationsofmotion.

Selecttheappropriategeneralizedcoordinates;IntroductionDifferentialequationsoffreevibration

10.1UndampedfreevibrationEstablish

Oxaxis,theequilibriumpositionofparticleMas

coordinateoriginO,whenthepositionofMisx,elasticforceFactingontheMcanbedescribedasBecauseSo(naturalfrequency)Let

Wehave

thisisahomogeneous,second-order,linear,differentialequationwithconstantcoefficients.Usingthemethodsofdifferentialequations,itsgeneralsolutionis

definingnewconstantsC

and?C

amplitudeofvibration

?phaseangleτ

periodf

frequecy10.1Undampedfreevibration

Example10-1mvldetermien(1)vibrationregulationofblock;(2)maxiumtensioninthewirerope.10.1UndampedfreevibrationAblockm=6000kgissuspendfromwireropethatpassesoverawheel.Theelasticmodulusandcross-sectionalareaareE=200GPaandA=2.89×10-4m2,respectively.Theblockisbeingloweredwithcostantvelocityv=0.25m/s,whentheblockisloweredtobel=25m,thewireropesuddenlyjams,

Solution:thesystemcanbeconsideredasspring-blocksystem,thestiffnessofspringis

N/m

Wecanassumethatwhenthewireropeisjammed,thetimeist=0,attheinstant,thepositionofblockisinitialequilibriumposition.Choosethedownwarddistancexofblockasgeneralizdcoordinate,thenvibrationequationofthesystemismkequilibriumpositionOxthesolutionisUsinginitialconditionHence,

10.1UndampedfreevibrationExample10-1S-1

m

(2)maxiumtensioninthewireropeChoosetheblockasobjectofstudymkOxFT10.1UndampedfreevibrationkN

equilibriumposition

10.2UndampedforcedvibrationForcedvibrationsis

casuedbyanexternalperiodicorintermittentforceappliedtothesystem.

DifferentialequationofvibrationorThesolutionis

xciscomplementarysolution;

xpisparticularsolution

10.2UndampedforcedvibrationAmplitudeofforcedvibration

themagnificationfactorMFisdefinedas(1)(2)(3)(4)

10.2Undampedforcedvibration?

<<

?n

;MF≈1thevibrationofthebl

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論