版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Chapter9d’AlembertPrincipleandVirtualDisplacementPrinciple§9.4Constraint,virtualdisplacement,virtualwork§9.5Principleofvirtualdisplacement§9.1InertialForceandd’AlembertPrincipleofaParticle§9.2d’AlembertPrincipleofaSystemofParticles§9.3ReductionofaSystemofInertialForcesofaRigidBodyMainContentsInthischapter,wewilldiscussd’Alembertprinciple,itprovidesageneralmethodtosolvethekineticproblemofaparticleandasystemofparticles,themethodisthatthemethodsofstaticsareappliedtosolvekineticsproblems,thuskineticproblemscanbetransformedformallytoanequivalentstaticproblems,theycanbesolvedbytheoremofequilibrium.Thusthismethodiscalledthekinetic-staticmethod.Applyingthekinetic-staticmethodwecandeterminethemotion,forexampleaccelerationangularacceleration;canalsodeterminetheforce.D’Alembert’sPrincipleApplyingNewtonsecondlaw,wehave§9.1Inertialforceandd’AlembertprincipleofaparticleAssumingmassofaparticleis,accelerateis,activeforceactingontheparticleis,constraintforceis,showninfigure.AboveequationistransposedandwrittenasMaking
Wehave
hasthedimensionofforce,iscalledtheinertialforceofparticle:itsmagnitudeisequaltotheproductofmassandaccelerationofparticle,itsdirectioniscontrarytothedirectionofparticleacceleration.Theactiveforce,constraintforceandvirtualinertialforceactingontheparticlecomposedformallyequilibratedsystemofforces,thisisd’Alembertprincipleofaparticle.OlθExamole
9-1§9.1Inertialforceandd’AlembertprincipleofaparticleShowninfigure,aconicalpendulum.Aballofmassm=0.1kgtiesaropeoflengthl=0.3m,oneendoftheropetiestoafixedpointO,andtheanglewiththeleadstraightlineisθ=60o.Ifthesmallballmakeuniformcircularmotioninthehorizontalplane,determinethevelocityoftheballvandthemagnitudeoftensionFoftherope.OlθenetebmgF*Example9-1FSolution:choosethesmallballastheparticletostudy.Theparticlemakesuniformcircularmotion,onlyhavenormalacceleration,theforcesactingontheparticleincludesgravitymg,pullingforceFofropeandnormalinertialforceF*,showninfigure.Accordingtod’Alembertprinciple,thethreeforcescomposedformallyequilibratedsystem,thatisTakingtheprojectionformulaofaboveequationinnaturalaxis,wehave:§9.1InertialforceandD’Alembert’sprincipleofaparticleExample
9-1OlθenetebmgF*FSolutionis:§9.1InertialforceandD’Alembert’sprincipleofaparticleAssumingssystemofparticlescomposedofnparticles,massofanyparticleiis,
accelerationis,allforcesactingontheparticleisdividedintoresultantforceofactiveforce,resultantforceofconstraintforce,theparticleisimaginarilyplusitsinertialforce,accordingtod’Alembertprincipleofaparticle,wehaveAboveequationshows,theactiveforce,constraintforceanditsinertialforceactingoneveryparticleofthesystemcomposedformallyequilibratedsystemofforces,thisisd’Alembertprincipleofasystemofparticles.Thisshows,externalforce,internalforceanditsinertialforceactingoneveryparticleofthesystemcomposedformallyequilibratedsystemofforces.§9.1InertialforceandD’Alembert’sprincipleofaparticleAllforcesactingtheithparticlearedividedintoresultantforceofexternalforce,
resultantforceofinternalforce,andaboveequationcanbewrittenasBystaticsweknowthatnecessaryandsufficientconditionofequilibriumofspacialgeneralforcesystemisthattheprincipalvectoroftheforcesystemandtheprincipalmomentaboutanypointisequaltozero,thatisAboveequationshows,externalforceactingonsystemofparticlesandinertialforcevirtualaddingoneveryparticlecomposeformallyequilibratedsystemofforces,thisisanotherrepresentationofd’Alembertprincipleofasystemofparticles.§9.2D’Alembert’sprincipleofasystemofparticlesSinceInternalforcesofthesystemofparticlesalwaysexistinpairs
,
andisequalinmagnitudeandoppositeindirection,andcollinear,
thenwehaveand
,henceInstatics,
iscalledtheprincipalvector,
istheprincipalmomentaboutpointO,nowiscalledtheprincipalvectorofinertialforcesystem,
istheprincipalmomentofinertialforcesystemaboutpointO.AccordingtoD’Alembert’sprincipleofasystemofparticles,thisisformallyaequilibratedsystemofforces,
hencewecanapplymethodofstaticsforsolvingvariousequilibratedforcesystemtosolvekineticproblem.§9.2D’Alembert’sprincipleofasystemofparticlesOABrExample
9-2Showninfigure,theradiusofpulleyisr,massmuniformlydistributedintherim,canrotatearoundthehorizontalaxis.Bothendsofthesoftropeacrosstherimhangheavybodyofmass
m1andm2,andm1>m2.Neglectweightofrope,thereisnorelativeslidingbetweenropeandpulley,neglectbearingfriction.Determinetheaccelerationofheavybody.§9.2D’Alembert’sprincipleofasystemofparticlesOABryExample
9-2aam1gmgm2gFNSolution:choosepulleyandthetwoheavybodiesasthesystemofparticlestobestudied.Theexternalforcesactingonthesystemincludegravitym1g,m2g,mgandbearingconstraintforces
FN.Eachparticleofthesystemisvirtuallyaddedinertialforce,wecanapplyd’Alembertprinciple.Weknowm1>m2,thenthedirectionofaccelerationaofheavybodyshowninfigure.Thedirectionofinertialforceofheavybodyisoppositetothedirectionofaccelerationa,magnitudearerespectively:§9.2D’Alembert’sprincipleofasystemofparticlesorExample
9-2OABraam1gmgm2gFNymiApplyingequationofmomentofforceaboutrotatingaxis,weobtain
§9.2D’Alembert’sprincipleofasystemofparticlesMassofeachpointonpulleyedgeismi,magnitudeoftangentialinertialforceis,directionisalongtherimtangentline,pointasshowninfigure.Whenthereisnorelativeslidingbetweenropeandpulley,;magnitudeofnormalinertialforceis,directionisalongradiusanddeparturefromthecenter.
sinceSolutionisExample
9-2OABraam1gmgm2gFNymi§9.2D’Alembert’sprincipleofasystemofparticles§9.3ReductionofasystemofinertialforcesofarigidbodyThisexpressionisestablishedaboutanymotionofanysystemofparticles,alsoappliestotherigidbodythatmakestranslation,fixedaxisrotationandplanemotion.Inthefollowingweintroducereductionofasystemofinertialforcesinthreecommoncases.Applyingd’Alembertprincipleofasystemofparticlestosolvekineticproblemofthesystem,
eachparticleofthesystemisaddeditsinertialforce,
theseinertialforcesformasystemofforces,
whichiscalledinertialforcesystem.Ifusingsimplifiedtheoryofforcesysteminstatics,
todeterminetheprincipalvectorandtheprincipalmomentintheinertialforcesystem,
substituteinertialforceaddedtoeachparticlewhenwespecificallysolve,
itwillbringconveniencetosolveproblem.Inthefollowingweonlydiscussreductionofinertialforcesystemintranslationofrigidbody,
fixedaxisrotationandplanemotion.representstheprinciplevectorofinertialforcesystem,
accordingtoandtheoremofmotionofmasscenter,
wehave1.RigidbodyintranslationRigidbodyisintranslation,
ateveryinstantaccelerationofanyparticleiinrigidbodyisthesameasaccelerationofmasscenter,
here,
inertialforcesystemofrigidbodydistributesinfigure,
arbitrarilychooseapointOassimplifiedcenter,
representstheprincipalmoment,
wehaveWhenrigidbodyisintranslation,theprinciplemomentofinertialforceaboutarbitrarypointisgenerallynotequaltozero.Ifchoosemasscenterassimplifiedcenter,itsprincipalmomentiszero,simplifiedasaresultantforce.Henceweconclude:inertialforcesystemoftranslationalrigidbodycanbesimplifiedtoresultantforcethroughmasscenter,itsmagnitudeisequaltotheproductofmassofrigidbodyandacceleration,thedirectionofresultantforceisoppositetothedirectionofacceleration.§9.3ReductionofasystemofinertialforcesofarigidbodyWhere,
isradiusvectorfrommasscenterCtosimplifiedcenterO,theprinciplemomentisgenerallynotequaltozero.IfchoosemasscenterCassimplifiedcenter,representtheprincipalmoment,then,
wehave2.Fixedaxisrotationofarigidbody§9.3ReductionofasystemofinertialforcesofarigidbodyInertialforceofparticlecanbedividedintotangentialinertialforceandnormalinertialforce
,andtheirdirectionsshowninfigure,magnitudearerespectivelyWhenrigidbodyisinfixedaxisrotation,assumingangularvelocityofrigidbodyis,angularaccelerationis,massofanyparticleinrigidbodyis,thedistancetorotatingaxisis,theninertialforceofanyparticleinrigidbodyis.Forsimplicity,arbitrarilychooseapointO
onrotatingaxisassimplifiedcenter,establishrectangularcoordinatesystemshowninfigure,coordinatesoftheparticleisIftherigidbodyhasaplaneofmasssymmetryandtheplaneisverticaltotherotatingaxisz,andthesimplifiedcenter
ischosentobetheintersectionpointofthisplanewiththerotatingaxisz,thenMomentofinertialforcesystemaboutaxisz
is
Sincenormalinertialforceofeachparticlepassthroughaxisz,
wehave§9.3Reductionofasystemofinertialforcesofarigidbody3.Rigidbodyinplanemotion(paralleltothemasssymmetryplane)§9.3ReductionofasystemofinertialforcesofarigidbodyInengineering,rigidbodyinplanemotionoftenhasmasssymmetryplane,andparalleltotheplanemotion,nowonlyinthiscasewediscussreductionofasystemofinertialforces.Similartorotationofrigidbodyaroundfixedaxis,rigidbodyisinplanemotion,spaceforcesystemcomposedofinertialforcesofeachparticle,canbesimplifiedtoplaneforcesysteminthemasssymmetryplane.Chooseplanefigureinthemasssymmetrypaneasshowninfigure.Bykinematicsweknow,motionofplanefigurecanbedividedintotranslationwiththebasepointandrotationaroundthebasepoint.NowchoosemasscenterCasthebasepoint,assumingtheaccelerationofmasscenteris,angularvelocityofrotationaroundmasscenteris,angularaccelerationis,similartorotationofrigidbodyaroundfixedaxis,nowtheprincipalmomentofreductionofasystemofinertialforcestomasscenterCisWhere
isthemassmomentofinertiaoftherigidbodyabouttheaxiswhichpassesthroughmasscenterandisverticaltothemasssymmetryplane.§9.3ReductionofasystemofinertialforcesofarigidbodySoweconclude:
rigidbodyhavethemasssymmetryplane,
whenmovingparalleltotheplane,
asystemofinertialforcesofrigidbodyisreducedtoaforceandacoupleintheplane.Theforcepassesthroughmasscenter,
itsmagnitudeisequaltotheproductofmassofrigidbodyandaccelerationofmasscenter,
itsdirectionisoppositetothedirectionofaccelerationofmasscenter;
momentofthecoupleisequaltotheproductofthemassmomentofinertiaoftherigidbodyabouttheaxiswhichpassesthroughmasscenterandisverticaltothemasssymmetryplaneandangularacceleration,
rotatingdirectionisoppositetoangularacceleration.xyωm1gm2gCOhφExample
9-3§9.3ReductionofasystemofinertialforcesofarigidbodyShowninfigure,massofstatorofelectricmotorism1,mountedonahorizontalbase.ThedistancebetweenrotatingaxisOandhorizontalplaneish,and
massofrotorism2,itsmasscenterisC,eccentricdistanceOC=e,whenmotionbegins,masscenterCisatthelowestposition.Rotorrotateswithconstantangularvelocityω,determinetheconstraintforceofthebaseactingontheelectricmotor.Example
9-3xyωm1gm2gCOhφFyFxMAF*Solution:choosethewholemotorasobjecttobestudied.Theforcesincludegravitym1gandm2g,constraintforceofbaseandgroundscrewactingontheelectricmotorsimplifiedtopointAasacoupleMandaforceF(showninfigureFxandFy).Thesystemofparticlesisaddedtoinertialforce.RotoruniformlyrotatesaboutfixedaxisOwithangularvelocityω,thesystemofinertialforceisreducedaforcethroughpointO,magnitudeisItsdirectionisoppositetoaccelerationaCofmasscenterC.SinceaCisalongOCandpointstocenterO,
F*isalongOCanddepartsfrompointO.§9.3ReductionofasystemofinertialforcesofarigidbodyExample
9-3xyωm1gm2gCOhφFyFxMAF*Accordingtod’Alembertprinciple,activeforce,constraintforceandinertialforceactingonthesystemofparticlesformallycomposeequilibriumforcesystem,wecanwriteequilibriumequation:Sincerotoruniformlyrotates,φ=ωt
,substitutingitintoaboveequations,weobtain:§9.3ReductionofasystemofinertialforcesofarigidbodymAgmgFABCExample
9-4MassofhomogeneousdiscismA,radiusisr.Lengthofslenderrodisl=2r,massism.PointAofrodendhingedsmoothlytowheelcenter,showninfigure.IfpointAsufferedahorizontalpullingforceF,makewheelrollalonghorizontalplane.DeterminethemagnitudeofforceF,whenendBofrodjustlefttheground.Inordertoensurepurerolling,determinecoefficientofstaticslidingfrictionbetweenthewheelandtheground.§9.3ReductionofasystemofinertialforcesofarigidbodyBCmgAF*CFAxFAyamAgmgFABCExample
9-4F*AF*CM*Accordingtokinetic-staticmethod,wewriteequationSolutionis
§9.3ReductionofasystemofinertialforcesofarigidbodySolution:whenslenderrodleftthegrounditisstillintranslation,andconstraintforceofgroundisequaltozero,assumingitsaccelerationisa.Chooserodasobjecttobestudied,theforcesactingonrodandaddinginertialforceasshowninfigure,where
Theforcesactingonthewholesystemandaddinginertialforcesasshowninfigure,whereAccordingtoequationweobtainmAgmgFABCF*AF*CM*FNFsExample
9-4Frictionofground
Inordertodeterminefriction,choosethewheelasobjecttobestudied.Solutionis
§9.3ReductionofasystemofinertialforcesofarigidbodyApplyingequationweobtainAmAgFFNF*AM*FsExample
9-4Thus,coefficientoffrictionofground§9.3ReductionofasystemofinertialforcesofarigidbodyAFNF*AF*CmAgmgFBCM*FsThenchoosethewholesystemasobjecttobestudied,
byequation,weobtainmAgFAFNF*AM*FsPrincipleofvirtualdisplacement:§9.4Constraint,virtualdisplacement,virtualworkToestablishtheequilibriumconditionsforthesystemofmasspointsindependentoftheNewtonianmechanicssystem.Newtoniansystemofmechanics:Vectormechanics,whichdescribesmechanicalquantitiesthatarerepresentedbyvectors,suchasvectordiameter,velocity,acceleration,angularvelocityandangularacceleration.Analyticalmechanicssystem:Scalarmechanics,whichdescribesphysicalquantitiesasscalars,suchasgeneralizedcoordinates,energyandwork.Theprincipleofvirtualdisplacementisbasedonanalyticalmechanicstoestablishthesufficientconditionsfortheequilibriumofthesystem,whichhasawidersignificancethantheequilibriumconditionsestablishedbyNewtonianmechanics.1.Constraintsandtheirclassification(1)Therestrictionsonthemotionofanobjectarecalledconstraints.Expressedasamathematicalequation,whichiscalledconstraintequation.Forexample:xφOyM(x,y)ιPlanependulumconstraintequation§9.4Constraint,virtualdisplacement,virtualwork2.Classificationofconstraints§9.4Constraint,virtualdisplacement,virtualworkGeometricconstraint:restrictonlythegeometricpositionofaparticle.Motionconstraint:theconstraintequationcontainsthederivativeoftheparticlecoordinates(withrespecttotime).Steadyconstraint:theconstraintisindependentoftime,i.e.,theconstraintequationdoesnotcontaintimet.Unsteadyconstraint:
theconstraintisdependentoftime,i.e.,thetimetisincludedintheconstraintequation.Holonomicconstraint:
includinggeometricconstraintsandmotionconstraintsthatcanbereducedtogeometricconstraints.Nonholonomicconstraint:amotionconstraintcannotbereducedtoageometricconstraint.3.
VirtualdisplacementAtacertaininstant,anyinfinitesimaldisplacementthattheparticlesystemmayachieveundertheconditionsallowedbyconstraintsiscalledthevirtualdisplacementoftheparticlesystem(atthatinstant).Thevirtualdisplacementcanbeeitheralineardisplacementoranangulardisplacement.Usually,thevariationalsymbolδisusedtorepresentvirtualdisplacement.Inthefollowingtwoexamples,δφ,δrAand
δrBareallvirtualdisplacement.xφOyMδφδs(+)xBAOyMFδrAδrBδφ§9.4Constraint,virtualdisplacement,virtualwork4.Differencebetweenvirtualdisplacementandrealdisplacement
Realdisplacementisthetruedisplacementachievedbyaparticlesystemwithinacertainperiodoftime,whichisnotonlyrelatedtoconstraints,butalsototime,activeforce,andinitialconditionsofmotion.Realdisplacementisactuallyoccurring;Virtualdisplacementmayoccurundertheconditionsallowedbyconstraintsandisrelatedtoconstraints.§9.4Constraint,virtualdisplacement,virtualwork
Theworkdonebyaforceinavirtualdisplacementiscalledvirtualwork,denotedasxBAOyMFδrAδrBδφ§9.4Constraint,virtualdisplacement,virtualworkAsshowninthefigure,thevirtualworkofFisF?δrB
,which
isnegativework;thevirtualworkofMisM?δφ,
whichispositivework.5.Virtualwork6.IdealconstraintInanyvirtualdisplacementoftheparticlesystem,ifthesumofthevirtualworkdonebyallconstraintsisequaltozero,thisconstraintiscalledanidealconstraint.(3)Purerollingofarigidbodyonaroughsurface(1)SmoothsupportsurfaceδrFN(2)SmoothhingesFNδrFFNC(4)weightlessrigidrod(5)Non-extendableflexiblecable(6)Fixedend§9.4Constraint,virtualdisplacement,virtualworkmiFiFNiδriThenIdealconstraint§9.5Principleofvirtualdisplacement
Letasystemofparticlesinrestequilibriumconsistofn
particles,wherethemassofanyparticle
iismi,andtheresultantforceFioftheactiveforceandtheresultantforceFNioftherestrainingforceactingonthisparticle,ifitisgivenanimaginarydisplacementδri.Asufficientnecessaryconditionforequilibriumofasystemofparticleswithidealconstraintsisthatthesumoftheimaginaryworkdoneinanyvirtualdisplacementbyalltheactiveforcesactingonthesystemofparticlesisequaltozero,i.e.
orTheaboveconclusioniscalledtheprincipleofvirtualdisplacement,alsoknownastheprincipleofvirtualwork.§9.5PrincipleofvirtualdisplacementAnalyticalformula:
TheEnd
Chapter10Vibrations
MainContents
§10.1
UndampedFreeVibration§10.2
UndampedForcedVibration§10.3ViscousDampedFreeVibration§10.4
ViscousDampedForcedVibrationVibration
istheperiodicmotionofabodyorsystemofconnectedbodiesdisplacedfromapositionofequilibrium.
Vibrationbelongstothesecondcategoryofkineticproblems
-solvemotionproblemsthroughknownactiveforces
Researchmethodofvibrationproblems
Motionanalysis;
Forceanalysis;
Selecttheappropriatekinetictheorem;
Establishandsovledifferentialequationsofmotion.
Selecttheappropriategeneralizedcoordinates;IntroductionDifferentialequationsoffreevibration
10.1UndampedfreevibrationEstablish
Oxaxis,theequilibriumpositionofparticleMas
coordinateoriginO,whenthepositionofMisx,elasticforceFactingontheMcanbedescribedasBecauseSo(naturalfrequency)Let
Wehave
thisisahomogeneous,second-order,linear,differentialequationwithconstantcoefficients.Usingthemethodsofdifferentialequations,itsgeneralsolutionis
definingnewconstantsC
and?C
amplitudeofvibration
?phaseangleτ
periodf
frequecy10.1Undampedfreevibration
Example10-1mvldetermien(1)vibrationregulationofblock;(2)maxiumtensioninthewirerope.10.1UndampedfreevibrationAblockm=6000kgissuspendfromwireropethatpassesoverawheel.Theelasticmodulusandcross-sectionalareaareE=200GPaandA=2.89×10-4m2,respectively.Theblockisbeingloweredwithcostantvelocityv=0.25m/s,whentheblockisloweredtobel=25m,thewireropesuddenlyjams,
Solution:thesystemcanbeconsideredasspring-blocksystem,thestiffnessofspringis
N/m
Wecanassumethatwhenthewireropeisjammed,thetimeist=0,attheinstant,thepositionofblockisinitialequilibriumposition.Choosethedownwarddistancexofblockasgeneralizdcoordinate,thenvibrationequationofthesystemismkequilibriumpositionOxthesolutionisUsinginitialconditionHence,
10.1UndampedfreevibrationExample10-1S-1
m
(2)maxiumtensioninthewireropeChoosetheblockasobjectofstudymkOxFT10.1UndampedfreevibrationkN
equilibriumposition
10.2UndampedforcedvibrationForcedvibrationsis
casuedbyanexternalperiodicorintermittentforceappliedtothesystem.
DifferentialequationofvibrationorThesolutionis
xciscomplementarysolution;
xpisparticularsolution
10.2UndampedforcedvibrationAmplitudeofforcedvibration
themagnificationfactorMFisdefinedas(1)(2)(3)(4)
10.2Undampedforcedvibration?
<<
?n
;MF≈1thevibrationofthebl
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆山東省德州臨邑縣聯(lián)考中考生物模擬試題含解析
- 2025年珠寶首飾銷售年度合同模板3篇
- 深圳2025年度物流服務(wù)合作協(xié)議2篇
- 2025年物業(yè)租賃合同變更擔(dān)保合同正規(guī)范范本3篇
- 2025年上半年邵陽市交通建設(shè)規(guī)劃辦公室招考易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年連云港市工業(yè)投資集團(tuán)社會(huì)招聘易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年遼寧省阜新彰武縣高中招聘高學(xué)歷人才20人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年遼寧省丹東事業(yè)單位招728人筆試重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解-1
- 2025年上半年遼寧朝陽市市直事業(yè)單位招考128人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年赤壁市市屬國企業(yè)招碩引博易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 小學(xué)一年級20以內(nèi)加減法混合運(yùn)算3000題(已排版)
- 智慧工廠數(shù)字孿生解決方案
- 病機(jī)-基本病機(jī) 邪正盛衰講解
- 品管圈知識 課件
- 非誠不找小品臺詞
- 2024年3月江蘇省考公務(wù)員面試題(B類)及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護(hù)理風(fēng)險(xiǎn)防控PPT
- 充電樁采購安裝投標(biāo)方案(技術(shù)方案)
- 醫(yī)院科室考勤表
- 鍍膜員工述職報(bào)告
評論
0/150
提交評論