2023屆重慶市九龍坡區(qū)育才成功學(xué)校數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考試題含解析_第1頁
2023屆重慶市九龍坡區(qū)育才成功學(xué)校數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考試題含解析_第2頁
2023屆重慶市九龍坡區(qū)育才成功學(xué)校數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考試題含解析_第3頁
2023屆重慶市九龍坡區(qū)育才成功學(xué)校數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考試題含解析_第4頁
2023屆重慶市九龍坡區(qū)育才成功學(xué)校數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.在一個不透明的盒子里有2個紅球和n個白球,這些球除顏色外其余完全相同,搖勻后隨機摸出一個,摸到紅球的概率是,則n的值為()A.3 B.5 C.8 D.102.10件產(chǎn)品中有2件次品,從中任意抽取1件,恰好抽到次品的概率是()A. B. C. D.3.某大學(xué)生創(chuàng)業(yè)團隊有研發(fā)、管理和操作三個小組,各組的日工資和人數(shù)如下表所示.現(xiàn)從管理組分別抽調(diào)1人到研發(fā)組和操作組,調(diào)整后與調(diào)整前相比,下列說法中不正確的是()A.團隊平均日工資不變 B.團隊日工資的方差不變C.團隊日工資的中位數(shù)不變 D.團隊日工資的極差不變4.如圖,4×2的正方形的網(wǎng)格中,在A,B,C,D四個點中任選三個點,能夠組成等腰三角形的概率為()A.1 B. C. D.5.下列說法中正確的有()①位似圖形都相似;②兩個等腰三角形一定相似;③兩個相似多邊形的面積比是,則周長比為;④若一個矩形的四邊形分別比另一個矩形的四邊形長2,那么這兩個矩形一定相似.A.1個 B.2個 C.3個 D.4個6.下列四個點,在反比例函數(shù)y=圖象上的是(

)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)7.下列式子中,為最簡二次根式的是()A. B. C. D.8.如圖,點A、B、C在⊙O上,則下列結(jié)論正確的是()A.∠AOB=∠ACBB.∠AOB=2∠ACBC.∠ACB的度數(shù)等于的度數(shù)D.∠AOB的度數(shù)等于的度數(shù)9.下列事件中是隨機事件的個數(shù)是()①投擲一枚硬幣,正面朝上;②五邊形的內(nèi)角和是540°;③20件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是次品;④一個圖形平移后與原來的圖形不全等.A.0 B.1 C.2 D.310.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在菱形ABCD中,對角線AC,BD交于點O,∠ABC=60°,AB=2,分別以點A、點C為圓心,以AO的長為半徑畫弧分別與菱形的邊相交,則圖中陰影部分的面積為______.(結(jié)果保留)12.已知點P是正方形ABCD內(nèi)部一點,且△PAB是正三角形,則∠CPD=_____度.13.連接三角形各邊中點所得的三角形面積與原三角形面積之比為:.14.二次函數(shù)y=+2的頂點坐標(biāo)為.15.已知二次函數(shù)是常數(shù)),當(dāng)時,函數(shù)有最大值,則的值為_____.16.如圖,正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為1:,點A的坐標(biāo)為(1,0),則四邊形ODEF的面積為_____.17.如圖,已知點A是雙曲線y=在第一象限的分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為斜邊作等腰直角△ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=(k<0)上運動,則k的值是_____.18.若,則=___________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標(biāo)系中,△ABC頂點的坐標(biāo)分別為A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2,且A?B?C位于點C的異側(cè),并表示出點A1的坐標(biāo).(2)作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C.(3)在(2)的條件下求出點B經(jīng)過的路徑長(結(jié)果保留π).20.(6分)某商場要經(jīng)營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案方案A:該文具的銷售單價高于進價且不超過30元;方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元請比較哪種方案的最大利潤更高,并說明理由21.(6分)為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:(1)a=,b=,c=;(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為度;(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學(xué)生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.22.(8分)如圖1,拋物線y=ax2+bx+c的頂點(0,5),且過點(﹣3,),先求拋物線的解析式,再解決下列問題:(應(yīng)用)問題1,如圖2,線段AB=d(定值),將其彎折成互相垂直的兩段AC、CB后,設(shè)A、B兩點的距離為x,由A、B、C三點組成圖形面積為S,且S與x的函數(shù)關(guān)系如圖所示(拋物線y=ax2+bx+c上MN之間的部分,M在x軸上):(1)填空:線段AB的長度d=;彎折后A、B兩點的距離x的取值范圍是;若S=3,則是否存在點C,將AB分成兩段(填“能”或“不能”);若面積S=1.5時,點C將線段AB分成兩段的長分別是;(2)填空:在如圖1中,以原點O為圓心,A、B兩點的距離x為半徑的⊙O;畫出點C分AB所得兩段AC與CB的函數(shù)圖象(線段);設(shè)圓心O到該函數(shù)圖象的距離為h,則h=,該函數(shù)圖象與⊙O的位置關(guān)系是.(提升)問題2,一個直角三角形斜邊長為c(定值),設(shè)其面積為S,周長為x,證明S是x的二次函數(shù),求該函數(shù)關(guān)系式,并求x的取值范圍和相應(yīng)S的取值范圍.23.(8分)在平面直角坐標(biāo)系中,拋物線與軸交于點A,將點A向右平移2個單位長度,得到點B,點B在拋物線上.(1)①直接寫出拋物線的對稱軸是________;②用含a的代數(shù)式表示b;(2)橫、縱坐標(biāo)都是整數(shù)的點叫整點.點A恰好為整點,若拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(不含邊界)恰有1個整點,結(jié)合函數(shù)的圖象,直接寫出a的取值范圍.24.(8分)已知二次函數(shù)y=ax2+bx+c的圖象過點A(﹣3,0),B(1,0),C(2,﹣5).(1)求此二次函數(shù)的表達式;(2)畫出這個函數(shù)的圖象;(3)△ABC的面積為.25.(10分)先化簡,再求值:,其中x=sin45°,y=cos60°.26.(10分)如圖,雙曲線上的一點,其中,過點作軸于點,連接.(1)已知的面積是,求的值;(2)將繞點逆時針旋轉(zhuǎn)得到,且點的對應(yīng)點恰好落在該雙曲線上,求的值.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】試題分析:在一個不透明的盒子里有2個紅球和n個白球,這些球除顏色外其余完全相同,搖勻后隨機摸出一個,摸到紅球的概率是,而其概率為,因此可得=,解得n=8.故選B.考點:概率的求法2、D【分析】由于10件產(chǎn)品中有2件次品,所以從10件產(chǎn)品中任意抽取1件,抽中次品的概率是.【詳解】解:.故選:D.【點睛】本題考查的知識點是用概率公式求事件的概率,根據(jù)題目找出全部情況的總數(shù)以及符合條件的情況數(shù)目是解此題的關(guān)鍵.3、B【解析】根據(jù)平均數(shù)、方差、中位數(shù)和眾數(shù)的定義分別對每一項進行分析,即可得出答案.【詳解】解:調(diào)整前的平均數(shù)是:=280;調(diào)整后的平均數(shù)是:=280;故A正確;調(diào)整前的方差是:=;調(diào)整后的方差是:=;故B錯誤;調(diào)整前:把這些數(shù)從小到大排列為:260,260,260,260,280,280,280,280,300,300,300,300;最中間兩個數(shù)的平均數(shù)是:280,則中位數(shù)是280,調(diào)整后:把這些數(shù)從小到大排列為:260,260,260,260,260,280,280,300,300,300,300,300;最中間兩個數(shù)的平均數(shù)是:280,則中位數(shù)是280,故C正確;調(diào)整前的極差是40,調(diào)整后的極差也是40,則極差不變,故D正確.故選B.【點睛】此題考查了平均數(shù)、方差、中位數(shù)和極差的概念,掌握各個數(shù)據(jù)的計算方法是關(guān)鍵.4、B【分析】根據(jù)題意,先列舉所有的可能結(jié)果,然后選取能組成等腰三角形的結(jié)果,根據(jù)概率公式即可求出答案.【詳解】解:根據(jù)題意,在A,B,C,D四個點中任選三個點,有:△ABC、△ABD、△ACD、△BCD,共4個三角形;其中是等腰三角形的有:△ACD、△BCD,共2個;∴能夠組成等腰三角形的概率為:;故選:B.【點睛】本題考查了列舉法求概率,等腰三角形的性質(zhì),勾股定理與網(wǎng)格問題,解題的關(guān)鍵是熟練掌握列舉法求概率,以及正確得到等腰三角形的個數(shù).5、A【分析】根據(jù)位似變換的概念、相似多邊形的判定定理和性質(zhì)定理判斷.【詳解】解:①位似圖形都相似,本選項說法正確;②兩個等腰三角形不一定相似,本選項說法錯誤;③兩個相似多邊形的面積比是2:3,則周長比為,本選項說法錯誤;④若一個矩形的四邊分別比另一個矩形的四邊長2,那么這兩個矩形對應(yīng)邊的比不一定相等,兩個矩形不一定一定相似,本選項說法錯誤;∴正確的只有①;故選:A.【點睛】本題考查的是位似變換、相似多邊形的判定和性質(zhì),掌握位似變換的概念、相似多邊形的判定定理和性質(zhì)定理是解題的關(guān)鍵.6、D【解析】由可得xy=6,故選D.7、B【分析】利用最簡二次根式定義判斷即可.【詳解】A、原式,不符合題意;B、是最簡二次根式,符合題意;C、原式,不符合題意;D、原式,不符合題意;故選B.【點睛】此題考查了最簡二次根式,熟練掌握最簡二次根式是解本題的關(guān)鍵.8、B【分析】根據(jù)圓周角定理和圓心角、弧、弦的關(guān)系逐個判斷即可.【詳解】A.根據(jù)圓周角定理得:∠AOB=2∠ACB,故本選項不符合題意;B.根據(jù)圓周角定理得:∠AOB=2∠ACB,故本選項符合題意;C.∠ACB的度數(shù)等于的度數(shù)的一半,故本選項不符合題意;D.∠AOB的度數(shù)等于的度數(shù),故本選項不符合題意.故選:B.【點睛】本題考查了圓周角定理和圓心角、弧、弦的關(guān)系,能熟記知識點的內(nèi)容是解答本題的關(guān)鍵.9、C【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】①擲一枚硬幣正面朝上是隨機事件;②五邊形的內(nèi)角和是540°是必然事件;③20件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是次品是隨機事件;④一個圖形平移后與原來的圖形不全等是不可能事件;則是隨機事件的有①③,共2個;故選:C.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.10、A【解析】作AH⊥BC于H,作直徑CF,連結(jié)BF,先利用等角的補角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據(jù)垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據(jù)三角形中位線性質(zhì)得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結(jié)BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質(zhì).二、填空題(每小題3分,共24分)11、【解析】根據(jù)菱形的性質(zhì)得到AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°,根據(jù)直角三角形的性質(zhì)求出AC、BD,根據(jù)扇形面積公式、菱形面積公式計算即可.【詳解】解:∵四邊形ABCD是菱形,∴AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°∴AO=AB=1,由勾股定理得,又∵AC=2,BD=2,∴調(diào)影部分的面積為:故答案為:【點睛】本題考查的是扇形面積計算、菱形的性質(zhì),掌握扇形面積公式是解題的關(guān)鍵.12、1【解析】如圖,先求出∠DAP=∠CBP=30°,由AP=AD=BP=BC,就可以求出∠PDC=∠PCD=15°,進而得出∠CPD的度數(shù).【詳解】解:如圖,∵四邊形ABCD是正方形,∴AD=AB=BC,∠DAB=∠ABC=90°,∵△ABP是等邊三角形,∴AP=BP=AB,∠PAB=∠PBA=60°,∴AP=AD=BP=BC,∠DAP=∠CBP=30°.∴∠BCP=∠BPC=∠APD=∠ADP=75°,∴∠PDC=∠PCD=15°,∴∠CPD=180°﹣∠PDC﹣∠PCD=180°﹣15°﹣15°=1°.故答案為1.【點睛】本題考查了正方形的性質(zhì)的運用,等邊三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,解答時運用三角形內(nèi)角和定理是關(guān)鍵.13、1:1【分析】證出DE、EF、DF是△ABC的中位線,由三角形中位線定理得出,證出△DEF∽△CBA,由相似三角形的面積比等于相似比的平方即可得出結(jié)果.【詳解】解:如圖所示:∵D、E、F分別AB、AC、BC的中點,∴DE、EF、DF是△ABC的中位線,∴DE=BC,EF=AB,DF=AC,∴∴△DEF∽△CBA,∴△DEF的面積:△CBA的面積=()2=.故答案為1:1.考點:三角形中位線定理.14、(1,2).【解析】試題分析:由二次函數(shù)的解析式可求得答案.∵y=(x﹣1)2+2,∴拋物線頂點坐標(biāo)為(1,2).故答案為(1,2).考點:二次函數(shù)的性質(zhì).15、或【分析】由題意,二次函數(shù)的對稱軸為,且開口向下,則可分為三種情況進行分析,分別求出m的值,即可得到答案.【詳解】解:∵,∴對稱軸為,且開口向下,∵當(dāng)時,函數(shù)有最大值,①當(dāng)時,拋物線在處取到最大值,∴,解得:或(舍去);②當(dāng)時,函數(shù)有最大值為1;不符合題意;③當(dāng)時,拋物線在處取到最大值,∴,解得:或(舍去);∴m的值為:或;故答案為:或.【點睛】本題考查了二次函數(shù)的性質(zhì),以及二次函數(shù)的最值,解題的關(guān)鍵是掌握二次函數(shù)的性質(zhì),確定對稱軸的位置,進行分類討論.16、1【分析】利用位似圖形的性質(zhì)得出D點坐標(biāo),進而求出正方形的面積.【詳解】∵正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為1:,點A的坐標(biāo)為(1,0),∴OA:OD=1:,∵OA=1,∴OD=,∴正方形ODEF的面積為:OD1=×=1.故答案為:1.【點睛】此題主要考查了位似變換以及坐標(biāo)與圖形的性質(zhì),得出OD的長是解題關(guān)鍵.17、-1.【分析】連結(jié)OC,作CD⊥x軸于D,AE⊥x軸于E,設(shè)A點坐標(biāo)為(a,),利用反比例函數(shù)的性質(zhì)得到點A與點B關(guān)于原點對稱,則OA=OB,再根據(jù)等腰直角三角形的性質(zhì)得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,則根據(jù)“AAS”可判斷△COD≌△OAE,所以O(shè)D=AE=,CD=OE=a,于是C點坐標(biāo)為(,﹣a),最后根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征確定C點所在的函數(shù)圖象解析式.【詳解】解:連結(jié)OC,作CD⊥x軸于D,AE⊥x軸于E,設(shè)A點坐標(biāo)為(a,),∵A點、B點是正比例函數(shù)圖象與雙曲線y=的交點,∴點A與點B關(guān)于原點對稱,∴OA=OB∵△ABC為等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,在△COD和△OAE中,,∴△COD≌△OAE,∴OD=AE,CD=OE,∴點C的坐標(biāo)為(,﹣a),×(﹣a)=﹣1,∴k=﹣1.故答案為:﹣1.【點睛】本題是一道綜合性較強的題目,用到的知識點有,反比例函數(shù)的性質(zhì),等腰三角形的性質(zhì),全等三角形的判定與性質(zhì)等,充分考查了學(xué)生綜合分析問題的能力.此類題目往往需要借助輔助線,使題目更容易理解.18、【分析】根據(jù)題干信息,利用已知得出a=b,進而代入代數(shù)式求出答案即可.【詳解】解:∵,∴a=b,∴=.故答案為:.【點睛】本題主要考查比例的性質(zhì),正確得出a=b,并利用代入代數(shù)式求值是解題關(guān)鍵.三、解答題(共66分)19、(1)見解析,A1(3,﹣3);(2)見解析;(3)【分析】(1)延長BC到B1,使B1C=2BC,延長AC到A1,使A1C=2AC,再順次連接即可得△A1B1C,再寫出A1坐標(biāo)即可;(2)分別作出A,B繞C點順時針旋轉(zhuǎn)90°后的對應(yīng)點A2,B2,再順次連接即可得△A2B2C.(3)點B的運動路徑為以C為圓心,圓心角為90°的弧長,利用弧長公式即可求解.【詳解】解:(1)如圖,△A1B1C為所作,點A1的坐標(biāo)為(3,﹣3);(2)如圖,△A2B2C為所作;(3)CB=,所以點B經(jīng)過的路徑長=π.【點睛】本題考查網(wǎng)格作圖與弧長計算,熟練掌握位似與旋轉(zhuǎn)作圖,以及弧長公式是解題的關(guān)鍵.20、(1)w=-10x2+700x-10000;(2)即銷售單價為35元時,該文具每天的銷售利潤最大;(3)A方案利潤更高.【分析】試題分析:(1)根據(jù)利潤=(單價-進價)×銷售量,列出函數(shù)關(guān)系式即可.(2)根據(jù)(1)式列出的函數(shù)關(guān)系式,運用配方法求最大值.(3)分別求出方案A、B中x的取值范圍,然后分別求出A、B方案的最大利潤,然后進行比較.【詳解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴當(dāng)x=35時,w有最大值2250,即銷售單價為35元時,該文具每天的銷售利潤最大.(3)A方案利潤高,理由如下:A方案中:20<x≤30,函數(shù)w=-10(x-35)2+2250隨x的增大而增大,∴當(dāng)x=30時,w有最大值,此時,最大值為2000元.B方案中:,解得x的取值范圍為:45≤x≤49.∵45≤x≤49時,函數(shù)w=-10(x-35)2+2250隨x的增大而減小,∴當(dāng)x=45時,w有最大值,此時,最大值為1250元.∵2000>1250,∴A方案利潤更高21、(1)2、45、20;(2)72;(3)【解析】分析:(1)根據(jù)A等次人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)乘以D等次百分比可得a的值,再用B、C等次人數(shù)除以總?cè)藬?shù)可得b、c的值;(2)用360°乘以C等次百分比可得;(3)畫出樹狀圖,由概率公式即可得出答案.詳解:(1)本次調(diào)查的總?cè)藬?shù)為12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為360°×20%=72°,(3)畫樹狀圖,如圖所示:共有12個可能的結(jié)果,選中的兩名同學(xué)恰好是甲、乙的結(jié)果有2個,故P(選中的兩名同學(xué)恰好是甲、乙)=.點睛:此題主要考查了列表法與樹狀圖法,以及扇形統(tǒng)計圖、條形統(tǒng)計圖的應(yīng)用,要熟練掌握.22、拋物線的解析式為:y=﹣x2+5;(2)20<x<2,不能,+和﹣;(2),相離或相切或相交;(3)相應(yīng)S的取值范圍為S>c2.【分析】將頂點(0,5)及點(﹣3,)代入拋物線的頂點式即可求出其解析式;(2)由拋物線的解析式先求出點M的坐標(biāo),由二次函數(shù)的圖象及性質(zhì)即可判斷d的值,可由d的值判斷出x的取值范圍,分別將S=3和2.5代入拋物線解析式,即可求出點C將線段AB分成兩段的長;(2)設(shè)AC=y(tǒng),CB=x,可直接寫出點C分AB所得兩段AC與CB的函數(shù)解析式,并畫出圖象,證△OPM為等腰直角三角形,過點O作OH⊥PM于點H,則OH=PM=,分情況可討論出AC與CB的函數(shù)圖象(線段PM)與⊙O的位置關(guān)系;(3)設(shè)直角三角形的兩直角邊長分別為a,b,由勾股定理及完全平公式可以證明S是x的二次函數(shù),并可寫出x的取值范圍及相應(yīng)S的取值范圍.【詳解】解:∵拋物線y=ax2+bx+c的頂點(0,5),∴y=ax2+5,將點(﹣3,)代入,得=a×(﹣3)2+5,∴a=,∴拋物線的解析式為:y=;(2)∵S與x的函數(shù)關(guān)系如圖所示(拋物線y=ax2+bx+c上MN之間的部分,M在x軸上),在y=,當(dāng)y=0時,x2=2,x2=﹣2,∴M(2,0),即當(dāng)x=2時,S=0,∴d的值為2;∴彎折后A、B兩點的距離x的取值范圍是0<x<2;當(dāng)S=3時,設(shè)AC=a,則BC=2﹣a,∴a(2﹣a)=3,整理,得a2﹣2a+6=0,∵△=b2﹣4ac=﹣4<0,∴方程無實數(shù)根;當(dāng)S=2.5時,設(shè)AC=a,則BC=2﹣a,∴a(2﹣a)=2.5,整理,得a2﹣2a+3=0,解得,∴當(dāng)a=時,2﹣a=,當(dāng)a=時,2﹣a=,∴若面積S=2.5時,點C將線段AB分成兩段的長分別是和;故答案為:2,0<x<2,不能,和;(2)設(shè)AC=y(tǒng),CB=x,則y=﹣x+2,如圖2所示的線段PM,則P(0,2),M(2,0),∴△OPM為等腰直角三角形,∴PM=OP=2,過點O作OH⊥PM于點H,則OH=PM=,∴當(dāng)0<x<時,AC與CB的函數(shù)圖象(線段PM)與⊙O相離;當(dāng)x=時,AC與CB的函數(shù)圖象(線段PM)與⊙O相切;當(dāng)<x<2時,AC與CB的函數(shù)圖象(線段PM)與⊙O相交;故答案為:,相離或相切或相交;(3)設(shè)直角三角形的兩直角邊長分別為a,b,則,∵(a+b)2=a2+b2+2ab,∴(x﹣c)2=c2+2ab,∴,即S=,∴x的取值范圍為:x>c,則相應(yīng)S的取值范圍為S>.【點睛】本題考查了待定系數(shù)法求解析式,二次函數(shù)的圖象及性質(zhì),直線與圓的位置關(guān)系等,解題關(guān)鍵是熟練掌握二二次函數(shù)的圖象及性質(zhì)并能靈活運用.23、(1)①直線x=1;②b=-1a;(1)-1≤a<-1或1<a≤1.【分析】(1)①根據(jù)拋物線的對稱性可以直接得出其對稱軸;②利用對稱軸公式進一步求解即可;(1)分兩種情況:①,②,據(jù)此依次討論即可.【詳解】解:(1)①∵當(dāng)x=0時,y=c,∴點A坐標(biāo)為(0,c),∵點A向右平移1個單位長度,得到點B,∴點B(1,c),∵點B在拋物線上,∴拋物線的對稱軸是:直線x=1;故答案為:直線x=1;②∵拋物線的對稱軸是直線:x=1,∴,即;(1)①如圖,若,因為點A(0,c),B(1,c)都是整點,且指定區(qū)域內(nèi)恰有一個整點,因此這個整點D的坐標(biāo)必為(1,c-1),但是從運算層面如何保證“恰有一個”呢,與拋物線的頂點C(1,c-a)做位置與數(shù)量關(guān)系上的比較,必須考慮到緊鄰點D的另一個整點E(1,c

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論