遼寧省大石橋市水源鎮(zhèn)九一貫制校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題含解析_第1頁(yè)
遼寧省大石橋市水源鎮(zhèn)九一貫制校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題含解析_第2頁(yè)
遼寧省大石橋市水源鎮(zhèn)九一貫制校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題含解析_第3頁(yè)
遼寧省大石橋市水源鎮(zhèn)九一貫制校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題含解析_第4頁(yè)
遼寧省大石橋市水源鎮(zhèn)九一貫制校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省大石橋市水源鎮(zhèn)九一貫制校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.對(duì)于代數(shù)式ax2+bx+c(a≠0),下列說(shuō)法正確的是()①如果存在兩個(gè)實(shí)數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個(gè)實(shí)數(shù)m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④2.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時(shí)紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°3.一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是()A. B. C. D.4.一次函數(shù)的圖象上有點(diǎn)和點(diǎn),且,下列敘述正確的是A.若該函數(shù)圖象交y軸于正半軸,則B.該函數(shù)圖象必經(jīng)過(guò)點(diǎn)C.無(wú)論m為何值,該函數(shù)圖象一定過(guò)第四象限D(zhuǎn).該函數(shù)圖象向上平移一個(gè)單位后,會(huì)與x軸正半軸有交點(diǎn)5.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個(gè)數(shù)據(jù)3,則下列統(tǒng)計(jì)量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差6.不等式﹣x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<47.下列分式是最簡(jiǎn)分式的是()A. B. C. D.8.下列因式分解正確的是()A.x2+9=(x+3)2 B.a(chǎn)2+2a+4=(a+2)2C.a(chǎn)3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)9.不等式3x≥x-5的最小整數(shù)解是()A.-3 B.-2 C.-1 D.210.下列運(yùn)算正確的是()A. B.C. D.11.某種商品的進(jìn)價(jià)為800元,出售時(shí)標(biāo)價(jià)為1200元,后來(lái)由于該商品積壓,商店準(zhǔn)備打折銷售,但要保證利潤(rùn)率不低于5%,則至多可打()A.6折 B.7折C.8折 D.9折12.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,學(xué)校環(huán)保社成員想測(cè)量斜坡CD旁一棵樹AB的高度,他們先在點(diǎn)C處測(cè)得樹頂B的仰角為60°,然后在坡頂D測(cè)得樹頂B的仰角為30°,已知DE⊥EA,斜坡CD的長(zhǎng)度為30m,DE的長(zhǎng)為15m,則樹AB的高度是_____m.14.一個(gè)圓錐的高為3,側(cè)面展開圖是半圓,則圓錐的側(cè)面積是_________15.?dāng)S一枚材質(zhì)均勻的骰子,擲得的點(diǎn)數(shù)為合數(shù)的概率是__________.16.如圖,在平面直角坐標(biāo)系xOy中,A(-2,0),B(0,2),⊙O的半徑為1,點(diǎn)C為⊙O上一動(dòng)點(diǎn),過(guò)點(diǎn)B作BP⊥直線AC,垂足為點(diǎn)P,則P點(diǎn)縱坐標(biāo)的最大值為cm.17.有五張背面完全相同的卡片,其正面分別畫有等腰三角形、平行四邊形、矩形、正方形、菱形,將這五張卡片背面朝上洗勻,從中隨機(jī)抽取一張,卡片上的圖形是中心對(duì)稱圖形的概率是_____.18.分解因式:2a4﹣4a2+2=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)讀詩(shī)詞解題:(通過(guò)列方程式,算出周瑜去世時(shí)的年齡)大江東去浪淘盡,千古風(fēng)流數(shù)人物;而立之年督東吳,早逝英年兩位數(shù);十位恰小個(gè)位三,個(gè)位平方與壽符;哪位學(xué)子算得快,多少年華屬周瑜?20.(6分)已知關(guān)于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負(fù)數(shù).(1)求m的取值范圍;(2)若方程②有兩個(gè)整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.21.(6分)對(duì)于平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點(diǎn)的“理想值”,記作.如的“理想值”.(1)①若點(diǎn)在直線上,則點(diǎn)的“理想值”等于_______;②如圖,,的半徑為1.若點(diǎn)在上,則點(diǎn)的“理想值”的取值范圍是_______.(2)點(diǎn)在直線上,的半徑為1,點(diǎn)在上運(yùn)動(dòng)時(shí)都有,求點(diǎn)的橫坐標(biāo)的取值范圍;(3),是以為半徑的上任意一點(diǎn),當(dāng)時(shí),畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)22.(8分)如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.23.(8分)已知:如圖,梯形ABCD中,AD∥BC,DE∥AB,與對(duì)角線交于點(diǎn),∥,且FG=EF.(1)求證:四邊形是菱形;(2)聯(lián)結(jié)AE,又知AC⊥ED,求證:.24.(10分)某區(qū)對(duì)即將參加中考的5000名初中畢業(yè)生進(jìn)行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:視力頻數(shù)(人)頻率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次調(diào)查的樣本為,樣本容量為;在頻數(shù)分布表中,a=,b=,并將頻數(shù)分布直方圖補(bǔ)充完整;若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計(jì)全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?25.(10分)計(jì)算:(﹣1)2018﹣2+|1﹣|+3tan30°.26.(12分)關(guān)于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個(gè)實(shí)數(shù)根.求m的取值范圍;若m為正整數(shù),求此方程的根.27.(12分)某學(xué)校為增加體育館觀眾坐席數(shù)量,決定對(duì)體育館進(jìn)行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點(diǎn)A到地面的鉛直高度AC長(zhǎng)度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場(chǎng)館中央的運(yùn)動(dòng)區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設(shè)計(jì)方案施工,新座位區(qū)最高點(diǎn)E到地面的鉛直高度EG長(zhǎng)度保持15米不變,使A、E兩點(diǎn)間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學(xué)校要求新坡腳F需與場(chǎng)館中央的運(yùn)動(dòng)區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請(qǐng)問(wèn)施工方提供的設(shè)計(jì)方案是否滿足安全要求呢?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】設(shè)(1)如果存在兩個(gè)實(shí)數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則說(shuō)明在中,當(dāng)x=p和x=q時(shí)的y值相等,但并不能說(shuō)明此時(shí)p、q是與x軸交點(diǎn)的橫坐標(biāo),故①中結(jié)論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說(shuō)明在中當(dāng)x=m、n、s時(shí),對(duì)應(yīng)的y值相等,因此m、n、s中至少有兩個(gè)數(shù)是相等的,故②錯(cuò)誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個(gè)不同的交點(diǎn),所以此時(shí)一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+c,故③在結(jié)論正確;(4)如果ac>0,則b2-4ac的值的正負(fù)無(wú)法確定,此時(shí)的圖象與x軸的交點(diǎn)情況無(wú)法確定,所以④中結(jié)論不一定成立.綜上所述,四種說(shuō)法中正確的是③.故選A.2、C【解析】

根據(jù)扇形的面積公式列方程即可得到結(jié)論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設(shè)扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點(diǎn)睛】本題考了扇形面積的計(jì)算的應(yīng)用,解題的關(guān)鍵是熟練掌握扇形面積計(jì)算公式:扇形的面積=.3、C【解析】

根據(jù)一次函數(shù)的位置確定a、b的大小,看是否符合ab<0,計(jì)算a-b確定符號(hào),確定雙曲線的位置.【詳解】A.由一次函數(shù)圖象過(guò)一、三象限,得a>0,交y軸負(fù)半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過(guò)一、三象限,所以此選項(xiàng)不正確;B.由一次函數(shù)圖象過(guò)二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數(shù)y=的圖象過(guò)二、四象限,所以此選項(xiàng)不正確;C.由一次函數(shù)圖象過(guò)一、三象限,得a>0,交y軸負(fù)半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過(guò)一、三象限,所以此選項(xiàng)正確;D.由一次函數(shù)圖象過(guò)二、四象限,得a<0,交y軸負(fù)半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項(xiàng)不正確;故選C.【點(diǎn)睛】此題考查反比例函數(shù)的圖象,一次函數(shù)的圖象,解題關(guān)鍵在于確定a、b的大小4、B【解析】

利用一次函數(shù)的性質(zhì)逐一進(jìn)行判斷后即可得到正確的結(jié)論.【詳解】解:一次函數(shù)的圖象與y軸的交點(diǎn)在y軸的正半軸上,則,,若,則,故A錯(cuò)誤;

把代入得,,則該函數(shù)圖象必經(jīng)過(guò)點(diǎn),故B正確;

當(dāng)時(shí),,,函數(shù)圖象過(guò)一二三象限,不過(guò)第四象限,故C錯(cuò)誤;

函數(shù)圖象向上平移一個(gè)單位后,函數(shù)變?yōu)?,所以?dāng)時(shí),,故函數(shù)圖象向上平移一個(gè)單位后,會(huì)與x軸負(fù)半軸有交點(diǎn),故D錯(cuò)誤,

故選B.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一次函數(shù)圖象與幾何變換,解題的關(guān)鍵是熟練掌握一次函數(shù)的性質(zhì),靈活應(yīng)用這些知識(shí)解決問(wèn)題,屬于中考常考題型.5、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個(gè)數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個(gè)數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個(gè)數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個(gè)數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點(diǎn)睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.6、A【解析】

根據(jù)一元一次不等式的解法,移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可得解.【詳解】移項(xiàng)得:?x>3?1,合并同類項(xiàng)得:?x>2,系數(shù)化為1得:x<-4.故選A.【點(diǎn)睛】本題考查了解一元一次不等式,解題的關(guān)鍵是熟練的掌握一元一次不等式的解法.7、C【解析】解:A.,故本選項(xiàng)錯(cuò)誤;B.,故本選項(xiàng)錯(cuò)誤;C.,不能約分,故本選項(xiàng)正確;D.,故本選項(xiàng)錯(cuò)誤.故選C.點(diǎn)睛:本題主要考查對(duì)分式的基本性質(zhì),約分,最簡(jiǎn)分式等知識(shí)點(diǎn)的理解和掌握,能根據(jù)分式的基本性質(zhì)正確進(jìn)行約分是解答此題的關(guān)鍵.8、C【解析】

試題分析:A、B無(wú)法進(jìn)行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點(diǎn):因式分解【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、B【解析】

先求出不等式的解集,然后從解集中找出最小整數(shù)即可.【詳解】∵3x≥x-5,∴3x-x≥-5,∴x≥-5∴不等式3x≥x-5的最小整數(shù)解是x=-2.故選B.【點(diǎn)睛】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關(guān)鍵.最后一步系數(shù)化為1時(shí),如果未知數(shù)的系數(shù)是負(fù)數(shù),則不等號(hào)的方向要改變,如果系數(shù)是正數(shù),則不等號(hào)的方不變.10、D【解析】【分析】根據(jù)同底數(shù)冪的乘法、積的乘方、完全平方公式、多項(xiàng)式乘法的法則逐項(xiàng)進(jìn)行計(jì)算即可得.【詳解】A.,故A選項(xiàng)錯(cuò)誤,不符合題意;B.,故B選項(xiàng)錯(cuò)誤,不符合題意;C.,故C選項(xiàng)錯(cuò)誤,不符合題意;D.,正確,符合題意,故選D.【點(diǎn)睛】本題考查了整式的運(yùn)算,熟練掌握同底數(shù)冪的乘法、積的乘方、完全平方公式、多項(xiàng)式乘法的運(yùn)算法則是解題的關(guān)鍵.11、B【解析】

設(shè)可打x折,則有1200×-800≥800×5%,解得x≥1.即最多打1折.故選B.【點(diǎn)睛】本題考查的是一元一次不等式的應(yīng)用,解此類題目時(shí)注意利潤(rùn)和折數(shù),計(jì)算折數(shù)時(shí)注意要除以2.解答本題的關(guān)鍵是讀懂題意,求出打折之后的利潤(rùn),根據(jù)利潤(rùn)率不低于5%,列不等式求解.12、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過(guò)A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點(diǎn)睛】考查的是銳角三角函數(shù)的定義、等腰三角形的性質(zhì)及勾股定理.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】

先根據(jù)CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數(shù)的定義即可得出結(jié)論.【詳解】解:作DF⊥AB于F,交BC于G.則四邊形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案為1.【點(diǎn)睛】本題考查的是解直角三角形的應(yīng)用-仰角俯角問(wèn)題,熟記銳角三角函數(shù)的定義是解答此題的關(guān)鍵.14、18π【解析】解:設(shè)圓錐的半徑為,母線長(zhǎng)為.則解得15、【解析】分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:擲一枚質(zhì)地均勻的骰子,擲得的點(diǎn)數(shù)可能是1、2、3、4、5、6中的任意一個(gè)數(shù),共有六種可能,其中4、6是合數(shù),所以概率為=.故答案為.點(diǎn)睛:本題主要考查概率的求法,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.16、【解析】

當(dāng)AC與⊙O相切于點(diǎn)C時(shí),P點(diǎn)縱坐標(biāo)的最大值,如圖,直線AC交y軸于點(diǎn)D,連結(jié)OC,作CH⊥x軸于H,PM⊥x軸于M,DN⊥PM于N,∵AC為切線,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2-)=1-,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=-,而MN=OD=,∴PM=PN+MN=1-+=,即P點(diǎn)縱坐標(biāo)的最大值為.【點(diǎn)睛】本題是圓的綜合題,先求出OD的長(zhǎng)度,最后根據(jù)兩點(diǎn)之間線段最短求出PN+MN的值.17、【解析】分析:直接利用中心對(duì)稱圖形的性質(zhì)結(jié)合概率求法直接得出答案.詳解:∵等腰三角形、平行四邊形、矩形、正方形、菱形中,平行四邊形、矩形、正方形、菱形都是中心對(duì)稱圖形,∴從中隨機(jī)抽取一張,卡片上的圖形是中心對(duì)稱圖形的概率是:.故答案為.點(diǎn)睛:此題主要考查了中心對(duì)稱圖形的性質(zhì)和概率求法,正確把握中心對(duì)稱圖形的定義是解題關(guān)鍵.18、1(a+1)1(a﹣1)1.【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案為:1(a+1)1(a﹣1)1【點(diǎn)睛】本題主要考查提取公因式與公式法的綜合運(yùn)用,關(guān)鍵要掌握提取公因式之后,根據(jù)多項(xiàng)式的項(xiàng)數(shù)來(lái)選擇方法繼續(xù)因式分解,如果多項(xiàng)式是兩項(xiàng),則考慮用平方差公式;如果是三項(xiàng),則考慮用完全平方公式.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、周瑜去世的年齡為16歲.【解析】

設(shè)周瑜逝世時(shí)的年齡的個(gè)位數(shù)字為x,則十位數(shù)字為x﹣1.根據(jù)題意建立方程求出其值就可以求出其結(jié)論.【詳解】設(shè)周瑜逝世時(shí)的年齡的個(gè)位數(shù)字為x,則十位數(shù)字為x﹣1.由題意得;10(x﹣1)+x=x2,解得:x1=5,x2=6當(dāng)x=5時(shí),周瑜的年齡25歲,非而立之年,不合題意,舍去;當(dāng)x=6時(shí),周瑜年齡為16歲,完全符合題意.答:周瑜去世的年齡為16歲.【點(diǎn)睛】本題是一道數(shù)字問(wèn)題的運(yùn)用題,考查了列一元二次方程解實(shí)際問(wèn)題的運(yùn)用,在解答中理解而立之年是一個(gè)人10歲的年齡是關(guān)鍵.20、(1)且,;(2)當(dāng)m=1時(shí),方程的整數(shù)根為0和3.【解析】

(1)先解出分式方程①的解,根據(jù)分式的意義和方程①的根為非負(fù)數(shù)得出的取值;

(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=3,,根據(jù)方程的兩個(gè)根都是整數(shù)可得m=1或.結(jié)合(1)的結(jié)論可知m1.解方程即可.【詳解】解:(1)∵關(guān)于x的分式方程的根為非負(fù)數(shù),∴且.又∵,且,∴解得且.又∵方程為一元二次方程,∴.綜上可得:且,.(2)∵一元二次方程有兩個(gè)整數(shù)根x1、x2,m為整數(shù),∴x1+x2=3,,∴為整數(shù),∴m=1或.又∵且,,∴m1.當(dāng)m=1時(shí),原方程可化為.解得:,.∴當(dāng)m=1時(shí),方程的整數(shù)根為0和3.【點(diǎn)睛】考查了解分式方程,一元二次方程根與系數(shù)的關(guān)系,解一元二次方程等,熟練掌握方程的解法是解題的關(guān)鍵.21、(1)①﹣3;②;(2);(3)【解析】

(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點(diǎn)與原點(diǎn)連線與軸夾角越大,可得直線與相切時(shí)理想值最大,與x中相切時(shí),理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時(shí),LQ取最小值和最大值,求出點(diǎn)橫坐標(biāo)即可;(3)根據(jù)題意將點(diǎn)轉(zhuǎn)化為直線,點(diǎn)理想值最大時(shí)點(diǎn)在上,分析圖形即可.【詳解】(1)①∵點(diǎn)在直線上,∴,∴點(diǎn)的“理想值”=-3,故答案為:﹣3.②當(dāng)點(diǎn)在與軸切點(diǎn)時(shí),點(diǎn)的“理想值”最小為0.當(dāng)點(diǎn)縱坐標(biāo)與橫坐標(biāo)比值最大時(shí),的“理想值”最大,此時(shí)直線與切于點(diǎn),設(shè)點(diǎn)Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點(diǎn)的“理想值”為,故答案為:.(2)設(shè)直線與軸、軸的交點(diǎn)分別為點(diǎn),點(diǎn),當(dāng)x=0時(shí),y=3,當(dāng)y=0時(shí),x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當(dāng)與軸相切時(shí),LQ=0,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最大值.作軸于點(diǎn),∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當(dāng)與直線相切時(shí),LQ=,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最小值.作軸于點(diǎn),則.設(shè)直線與直線的交點(diǎn)為.∵直線中,k=,∴,∴,點(diǎn)F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(jìn)(2,m),∴M點(diǎn)在直線x=2上,∵,∴LQ取最大值時(shí),=,∴作直線y=x,與x=2交于點(diǎn)N,當(dāng)M與ON和x軸同時(shí)相切時(shí),半徑r最大,根據(jù)題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【點(diǎn)睛】本題是一次函數(shù)和圓的綜合題,主要考查了一次函數(shù)和圓的切線的性質(zhì),解答時(shí)要注意做好數(shù)形結(jié)合,根據(jù)圖形進(jìn)行分類討論.22、2.7米.【解析】

先根據(jù)勾股定理求出AB的長(zhǎng),同理可得出BD的長(zhǎng),進(jìn)而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的寬度CD為2.7米.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問(wèn)題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問(wèn)題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.23、(1)見解析;(2)見解析【解析】分析:(1)由兩組對(duì)邊分別平行的四邊形是平行四邊形,得到是平行四邊形.再由平行線分線段成比例定理得到:,,=,即可得到結(jié)論;(2)連接,與交于點(diǎn).由菱形的性質(zhì)得到⊥,進(jìn)而得到,,即有,得到△∽△,由相似三角形的性質(zhì)即可得到結(jié)論.詳解:(1)∵∥∥,∴四邊形是平行四邊形.∵∥,∴.同理.得:=∵,∴.∴四邊形是菱形.(2)連接,與交于點(diǎn).∵四邊形是菱形,∴⊥.得.同理.∴.又∵是公共角,∴△∽△.∴.∴.點(diǎn)睛:本題主要考查了菱形的判定和性質(zhì)以及相似三角形的判定與性質(zhì).靈活運(yùn)用菱形的判定與性質(zhì)是解題的關(guān)鍵.24、200名初中畢業(yè)生的視力情況200600.05

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論