版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列函數(shù)中是反比例函數(shù)的是()A. B. C. D.2.如圖,在平面直角坐標系中,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點,當時,自變量的取值范圍是()A. B.C.或 D.或3.如圖,已知,且,則()A. B. C. D.4.若半徑為5cm的一段弧長等于半徑為2cm的圓的周長,則這段弧所對的圓心角為()A.144° B.132° C.126° D.108°5.用配方法解一元二次方程時,原方程可變形為()A. B. C. D.6.對于二次函數(shù)y=﹣2x2,下列結論正確的是()A.y隨x的增大而增大 B.圖象關于直線x=0對稱C.圖象開口向上 D.無論x取何值,y的值總是負數(shù)7.如果,兩點都在反比例函數(shù)的圖象上,那么與的大小關系是()A. B. C. D.8.下列幾何體的三視圖相同的是(
)A.圓柱
B.球
C.圓錐
D.長方體9.如圖,在中,是邊上一點,延長交的延長線于點,若,則等于()A. B. C. D.10.如圖,直線y=x+3與x、y軸分別交于A、B兩點,則cos∠BAO的值是()A. B. C. D.11.如圖,△ABC中,點D,E在邊AB,AC上,DE∥BC,△ADE與△ABC的周長比為2∶5,則AD∶DB為()A.2∶5 B.4∶25 C.2∶3 D.5∶212.點A、B、C是平面內不在同一條直線上的三點,點D是平面內任意一點,若A、B、C、D四點恰能構成一個平行四邊形,則在平面內符合這樣條件的點D有()A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.已知x=﹣1是方程x2﹣2mx﹣3=0的一個根,則該方程的另一個根為_____.14.關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是_________.15.有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數(shù),從中任意抽出一張卡片,卡片上的數(shù)是3的倍數(shù)的概率是16.如圖,已知點A在反比例函數(shù)圖象上,AC⊥y軸于點C,點B在x軸的負半軸上,且△ABC的面積為3,則該反比例函數(shù)的表達式為__.17.在平面直角坐標系中,已知點,以原點為位似中心,相似比為.把縮小,則點的對應點的坐標分別是_____,_____.18.下表記錄了甲、乙、丙、丁四名跳遠運動員選拔賽成績的平均數(shù)與方差s2:甲乙丙丁平均數(shù)(cm)561560561560方差s2(cm2)3.53.515.516.5根據(jù)表中數(shù)據(jù),要從中選擇一名成績好又發(fā)揮穩(wěn)定的運動員參加比賽,應該選擇_____.三、解答題(共78分)19.(8分)如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達點P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結果都保留根號).20.(8分)如圖,在平面直角坐標系中,拋物線與軸交于點,點的坐標分別是,與軸交于點.點在第一、二象限的拋物線上,過點作軸的平行線分別交軸和直線于點、.設點的橫坐標為,線段的長度為.⑴求這條拋物線對應的函數(shù)表達式;⑵當點在第一象限的拋物線上時,求與之間的函數(shù)關系式;⑶在⑵的條件下,當時,求的值.21.(8分)如圖,,分別是,上的點,,于,于.若,,求:(1);(2)與的面積比.22.(10分)如圖,某數(shù)學興趣小組為測量一棵古樹BH和教學樓的高,先在點處用高1.5米的測角儀測得古樹頂端點的仰角為,此時教學樓頂端點恰好在視線上,再向前走7米到達點處,又測得教學樓頂端點的仰角為,點、、點在同一水平線上.(1)計算古樹的高度;(2)計算教學樓的高度.(結果精確到0.1米,參考數(shù)據(jù):,).23.(10分)如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分別是邊BC、AC上的兩個動點,且DE=4,P是DE的中點,連接PA,PB,則PA+PB的最小值為_____.24.(10分)已知直線y=x+3交x軸于點A,交y軸于點B,拋物線y=﹣x2+bx+c經(jīng)過點A,B.(1)求拋物線解析式;(2)點C(m,0)在線段OA上(點C不與A,O點重合),CD⊥OA交AB于點D,交拋物線于點E,若DE=AD,求m的值;(3)點M在拋物線上,點N在拋物線的對稱軸上,在(2)的條件下,是否存在以點D,B,M,N為頂點的四邊形為平行四邊形?若存在,請求出點N的坐標;若不存在,請說明理由.25.(12分)我市某公司用800萬元購得某種產(chǎn)品的生產(chǎn)技術后,進一步投入資金1550萬元購買生產(chǎn)設備,進行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費40元.經(jīng)過市場調研發(fā)現(xiàn):該產(chǎn)品的銷售單價需要定在200元到300元之間較為合理.銷售單價(元)與年銷售量(萬件)之間的變化可近似的看作是如下表所反應的一次函數(shù):銷售單價(元)200230250年銷售量(萬件)14119(1)請求出與之間的函數(shù)關系式,并直接寫出自變量的取值范圍;(2)請說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?26.已知關于x的一元二次方程有兩個不相等的實數(shù)根.求k的取值范圍;若k為負整數(shù),求此時方程的根.
參考答案一、選擇題(每題4分,共48分)1、B【分析】由題意直接根據(jù)反比例函數(shù)的定義對下列選項進行判定即可.【詳解】解:根據(jù)反比例函數(shù)的定義可知是反比例函數(shù),,是一次函數(shù),,是二次函數(shù),都要排除.故選:B.【點睛】本題考查反比例函數(shù)的定義,注意掌握反比例函數(shù)解析式的一般形式,也可以轉化為的形式.2、D【解析】顯然當y1>y2時,正比例函數(shù)的圖象在反比例函數(shù)圖象的上方,結合圖形可直接得出結論.【詳解】∵正比例函數(shù)y1=k1x的圖象與反比例函數(shù)的圖象交于A(-1,-2),B(1,2)點,
∴當y1>y2時,自變量x的取值范圍是-1<x<0或x>1.
故選:D.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,數(shù)形結合的思想是解題的關鍵.3、D【分析】根據(jù)相似三角形的面積比等于相似比的平方即可解決問題.【詳解】解:∵,∴,∵,∴,故選:D.【點睛】此題考查相似三角形的性質,解題的關鍵是熟練掌握相似三角形的性質解決問題,記住相似三角形的面積比等于相似比的平方.4、A【分析】利用圓的周長公式求得該弧的長度,然后由弧長公式進行計算.【詳解】解:依題意得2π×2=,解得n=1.故選:A.【點睛】本題考查了弧長的計算.此題的已知條件是半徑為2的圓的周長=半徑為5的弧的弧長.5、B【解析】試題分析:,,.故選B.考點:解一元二次方程-配方法.6、B【分析】根據(jù)二次函數(shù)的性質可判斷A、B、C,代入x=0,可判斷D.【詳解】解:∵a=﹣2<0,b=0,∴二次函數(shù)圖象開口向下;對稱軸為x=0;當x<0時,y隨x增大而增大,當x>0時,y隨x增大而減小,故A,C錯誤,B正確,當x=0時,y=0,故D錯誤,故選:B.【點睛】本題考查了二次函數(shù)的圖象和性質,熟練掌握基礎知識是解題關鍵.7、C【分析】直接把點A(1,y1),B(3,y1)兩點代入反比例函數(shù)中,求出y1與y1的值,再比較其大小即可.【詳解】解:∵A(1,y1),B(3,y1)兩點都在反比例函數(shù)的圖象上;∴y1>y1.
故選:C.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.8、B【解析】試題分析:選項A、圓柱的三視圖,如圖所示,不合題意;選項B、球的三視圖,如圖所示,符合題意;選項C、圓錐的三視圖,如圖所示,不合題意;選項D、長方體的三視圖,如圖所示,不合題意;.故答案選B.考點:簡單幾何體的三視圖.9、B【分析】根據(jù)平行四邊形的性質可得出AB=CD,,得出,再利用相似三角形的性質得出對應線段成比例,即,從而可得解.【詳解】解:四邊形是平行四邊形,,,,且,,故選:.【點睛】本題考查的知識點有平行四邊形的性質,相似三角形的性質,綜合運用各知識點能夠更好的解決問題.10、A【解析】∵在中,當時,;當時,解得;∴點A、B的坐標分別為(-4,0)和(0,3),∴OA=4,OB=3,又∵∠AOB=90°,∴AB=,∴cos∠BAO=.故選A.11、C【分析】由題意易得,根據(jù)兩個相似三角形的周長比等于相似比可直接得解.【詳解】,,△ADE與△ABC的周長比為2∶5,,.故選C.【點睛】本題主要考查相似三角形的性質,關鍵是根據(jù)兩個三角形相似,那么它們的周長比等于相似比.12、C【解析】試題分析:由題意畫出圖形,在一個平面內,不在同一條直線上的三點,與D點恰能構成一個平行四邊形,符合這樣條件的點D有3個.故選C.考點:平行四邊形的判定二、填空題(每題4分,共24分)13、1【分析】根據(jù)根與系數(shù)的關系即可求出答案.【詳解】解:設另外一個根為x,由根與系數(shù)的關系可知:﹣x=﹣1,∴x=1,故答案為:1.【點睛】本題考查了一元二次方程根與系數(shù)的關系,熟知根與系數(shù)的關系是解題的關鍵.14、【分析】方程有兩個不相等的實數(shù)根,則>2,由此建立關于k的不等式,然后可以求出k的取值范圍.【詳解】解:由題意知,=36-36k>2,
解得k<1.
故答案為:k<1.【點睛】本題考查了一元二次方程根的情況與判別式的關系:(1)>2?方程有兩個不相等的實數(shù)根;(2)=2?方程有兩個相等的實數(shù)根;(3)<2?方程沒有實數(shù)根.同時注意一元二次方程的二次項系數(shù)不為2.15、.【分析】分別求出從1到6的數(shù)中3的倍數(shù)的個數(shù),再根據(jù)概率公式解答即可.【詳解】有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數(shù),從中任意抽出一張卡片,共有6種結果,其中卡片上的數(shù)是3的倍數(shù)的有3和6兩種情況,所以從中任意抽出一張卡片,卡片上的數(shù)是3的倍數(shù)的概率是.故答案為【點睛】考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.16、y=﹣【解析】根據(jù)同底等高的兩個三角形面積相等,可得△AOC的面積=△ABC的面積=3,再根據(jù)反比例函數(shù)中k的幾何意義,即可確定k的值,進而得出反比例函數(shù)的解析式.【詳解】解:如圖,連接AO,設反比例函數(shù)的解析式為y=.∵AC⊥y軸于點C,∴AC∥BO,∴△AOC的面積=△ABC的面積=3,又∵△AOC的面積=|k|,∴|k|=3,∴k=±2;又∵反比例函數(shù)的圖象的一支位于第二象限,∴k<1.∴k=﹣2.∴這個反比例函數(shù)的解析式為y=﹣.故答案為y=﹣.【點睛】本題考查待定系數(shù)法求反比例函數(shù)的解析式和反比例函數(shù)中k的幾何意義.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.17、(-1,2)或(1,-2);(-3,-1)或(3,1)【分析】利用以原點為位似中心,相似比為k,位似圖形對應點的坐標的比等于k或?k,分別把A,B點的橫縱坐標分別乘以或?即可得到點B′的坐標.【詳解】∵以原點O為位似中心,相似比為,把△ABO縮小,∴的對應點A′的坐標是(-1,2)或(1,-2),點B(?9,?3)的對應點B′的坐標是(?3,?1)或(3,1),故答案為:(-1,2)或(1,-2);(-3,-1)或(3,1).【點睛】本題考查了位似變換:在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k.18、甲【解析】首先比較平均數(shù),平均數(shù)相同時選擇方差較小的運動員參加.【詳解】∵,∴從甲和丙中選擇一人參加比賽,∵,∴選擇甲參賽,故答案為甲.【點睛】此題考查了平均數(shù)和方差,關鍵是根據(jù)方差反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.三、解答題(共78分)19、小船到B碼頭的距離是10海里,A、B兩個碼頭間的距離是(10+10)海里【解析】試題分析:過P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.試題解析:如圖:過P作PM⊥AB于M,則∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B碼頭的距離是海里,A、B兩個碼頭間的距離是()海里.考點:解直角三角形的應用-方向角問題.20、(1);(2)當時,,當時,;(3)或.【分析】(1)由題意直接根據(jù)待定系數(shù)法,進行分析計算即可得出函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應關系,可得C點坐標,根據(jù)待定系數(shù)法,可得BC的解析式,根據(jù)E點的縱坐標,可得E點的橫坐標,根據(jù)兩點間的距離,可得答案;(3)由題意根據(jù)PE與DE的關系,可得關于m的方程,根據(jù)解方程根據(jù)解方程,即可得出答案.【詳解】解:(1)由題意得,解得∴這條拋物線對應的函數(shù)表達式是.(2)當時,.∴點的坐標是.設直線的函數(shù)關系式為.由題意得解得∴直線的函數(shù)關系式為.∵PD∥x軸,∴.∴.當時,如圖①,.當時,如圖②,.(3)當時,,.∵,∴.解得(不合題意,舍去),.當時,,.∵,∴.解得(不合題意,舍去),.綜上所述,當時,或.【點睛】本題考查二次函數(shù)綜合題,利用待定系數(shù)法求函數(shù)解析式;利用平行于x軸直線上點的縱坐標相等得出E點的縱坐標是解題關鍵;利用PE與DE的關系得出關于m的方程是解題的關鍵.21、(1);(2)【分析】(1)先根據(jù)相似三角形的判定定理得出,再根據(jù)相似三角形的性質即可得出答案;(2)根據(jù)相似三角形的面積之比等于其相似比的平方即可得.【詳解】(1);(2)由(1)已證.【點睛】本題考查了相似三角形的判定定理與性質,屬于基礎題,熟記定理與性質是解題關鍵.22、(1)8.5米;(2)18.0米【分析】(1)先根據(jù)題意得出DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,可求出HE的長度,進而可計算古樹的高度;(2)作HJ⊥CG于G,設HJ=GJ=BC=x,在Rt△EFG中,利用特殊角的三角函數(shù)值求出x的值,進而求出GF,最后利用CG=CF+FG即可得出答案.【詳解】解:(1)由題意:四邊形ABED是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.∴BH=EH+BE=8.5米.答:古樹BH的高度為8.5米.(2)作HJ⊥CG于G.則△HJG是等腰直角三角形,四邊形BCJH是矩形,設HJ=GJ=BC=x.在Rt△EFG中,tan60°=,∴,∴GF=≈16.45∴CG=CF+FG=1.5+16.45≈17.95≈18.0米.答:教學樓CG的高度為18.0米.【點睛】本題主要考查解直角三角形,能夠數(shù)形結合,構造出直角三角形是解題的關鍵.23、【分析】連接PC,則PC=DE=2,在CB上截取CM=0.25,得出△CPM∽△CBP,即可得出結果.【詳解】解:連接PC,則PC=DE=2,∴P在以C為圓心,2為半徑的圓弧上運動,在CB上截取CM=0.25,連接MP,∴,∴,∵∠MCP=∠PCB,∴△CPM∽△CBP,∴PM=PB,∴PA+PB=PA+PM,∴當P、M、A共線時,PA+PB最小,即.【點睛】本題考查了最短路徑問題,相似三角形的判定與性質,正確做出輔助線是解題的關鍵.24、(1)y=﹣x2﹣2x+3;(2)m=﹣2;(3)存在,點N的坐標為(﹣1,﹣2)或(﹣1,0),理由見解析【分析】(1)先確定出點A,B坐標,再用待定系數(shù)法即可得出結論;(2)先表示出DE,再利用勾股定理表示出AD,建立方程即可得出結論;(3)分兩種情況:①以BD為一邊,判斷出△EDB≌△GNM,即可得出結論.②以BD為對角線,利用中點坐標公式即可得出結論.【詳解】(1)當x=0時,y=3,∴B(0,3),當y=0時,x+3=0,x=﹣3,∴A(﹣3,0),把A(﹣3,0),B(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2﹣2x+3,(2)∵CD⊥OA,C(m,0),∴D(m,m+3),E(m,﹣m2﹣2m+3),∴DE=(﹣m2﹣2m+3)﹣(m+3)=﹣m
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024水泥行業(yè)合作引薦協(xié)議范本
- 范本:2024年商業(yè)產(chǎn)品采購協(xié)議
- 南京信息工程大學《最優(yōu)化理論與算法Ⅰ》2022-2023學年第一學期期末試卷
- 獨家代理2024房地產(chǎn)銷售合作協(xié)議
- 債權轉股權協(xié)議范文
- 2024小店區(qū)精裝二手房買賣正式協(xié)議
- 新材料新技術對社會發(fā)展和生活方式的影響考核試卷
- 人工智能在金融風險管理中的量化分析與應用考核試卷
- 南京信息工程大學《現(xiàn)代工程項目管理》2021-2022學年第一學期期末試卷
- 南京信息工程大學《投資銀行學》2022-2023學年第一學期期末試卷
- 妊娠期及產(chǎn)褥期靜脈血栓栓塞癥預防和診治試題及答案
- 好的六堡茶知識講座
- 環(huán)境科學大學生生涯發(fā)展報告
- 鋼筋優(yōu)化技術創(chuàng)效手冊(2022年)
- 醫(yī)學課件指骨骨折
- 酒店式公寓方案
- 二年級下冊語文課件-作文指導:13-通知(23張PPT) 部編版
- 高二之路-我們的挑戰(zhàn)與成長
- 同先輩比我們身上少了什么
- 抗癌必修課胰腺癌
- 充電樁采購安裝投標方案(技術方案)
評論
0/150
提交評論