




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧沈陽皇姑區(qū)2025屆九年級數(shù)學第一學期期末質量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,為的切線,切點為,連接,與交于點,延長與交于點,連接,若,則的度數(shù)為()A. B. C. D.2.拋物線y=-2(x+3)2-4的頂點坐標是:A.(3,-4) B.(-3,4) C.(-3,-4) D.(-4,3)3.在同一坐標系中,二次函數(shù)y=x2+2與一次函數(shù)y=2x的圖象大致是()A.A B.B C.C D.D4.當k>0時,下列圖象中哪些可能是y=kx與y=在同一坐標系中的圖象()A. B. C. D.5.兩個相似多邊形的面積之比是1:4,則這兩個相似多邊形的周長之比是()A.1:2 B.1:4 C.1:8 D.1:166.如圖,的直徑,弦于.若,則的長是()A. B. C. D.7.某汽車行駛時的速度v(米/秒)與它所受的牽引力F(牛)之間的函數(shù)關系如圖所示.當它所受牽引力為1200牛時,汽車的速度為()A.180千米/時 B.144千米/時 C.50千米/時 D.40千米/時8.已知反比例函數(shù)圖象如圖所示,下列說法正確的是()A.B.隨的增大而減小C.若矩形面積為2,則D.若圖象上兩個點的坐標分別是,,則9.如圖,熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B的仰角為300,看這棟高樓底部C的俯角為600,熱氣球A與高樓的水平距離為120m,這棟高樓BC的高度為()A.40m B.80m C.120m D.160m10.對于不為零的兩個實數(shù)a,b,如果規(guī)定:a★b=,那么函數(shù)y=2★x的圖象大致是()A. B. C. D.11.如圖,四邊形OABF中,∠OAB=∠B=90°,點A在x軸上,雙曲線過點F,交AB于點E,連接EF.若,S△BEF=4,則k的值為()A.6 B.8 C.12 D.1612.口袋中有2個紅球和1個黑球,每次摸到后放回,兩次都摸到紅球的概率為()A. B. C. D.二、填空題(每題4分,共24分)13.拋物線y=(x-2)2+3的頂點坐標是______.14.如圖,在平面直角坐標系中,,則經(jīng)過三點的圓弧所在圓的圓心的坐標為__________;點坐標為,連接,直線與的位置關系是___________.15.如圖,一個半徑為,面積為的扇形紙片,若添加一個半徑為的圓形紙片,使得兩張紙片恰好能組合成一個圓錐體,則添加的圓形紙片的半徑為____.16.若⊙O的直徑是4,圓心O到直線l的距離為3,則直線l與⊙O的位置關系是_________.17.已知函數(shù)的圖象如圖所示,若矩形的面積為,則__________.18.如圖,點、分別在的邊、上,若,,.若,,則的長是__________.三、解答題(共78分)19.(8分)如圖⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm.點M由點B出發(fā)沿BA方向向點A勻速運動,同時點N由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接MN,設運動時間為t(s)﹙0<t<4﹚,解答下列問題:⑴設△AMN的面積為S,求S與t之間的函數(shù)關系式,并求出S的最大值;⑵如圖⑵,連接MC,將△MNC沿NC翻折,得到四邊形MNPC,當四邊形MNPC為菱形時,求t的值;⑶當t的值為,△AMN是等腰三角形.20.(8分)如圖,在中,,,以為頂點在邊上方作菱形,使點分別在邊上,另兩邊分別交于點,且點恰好平分.(1)求證:;(2)請說明:.21.(8分)如圖是某一蓄水池每小時的排水量/與排完水池中的水所用時間之間的函數(shù)關系的圖像.(1)請你根據(jù)圖像提供的信息寫出此函數(shù)的函數(shù)關系式;(2)若要6h排完水池中的水,那么每小時的排水量應該是多少?22.(10分)在△ABC中,P為邊AB上一點.(1)如圖1,若∠ACP=∠B,求證:AC2=AP·AB;(2)若M為CP的中點,AC=2,①如圖2,若∠PBM=∠ACP,AB=3,求BP的長;②如圖3,若∠ABC=45°,∠A=∠BMP=60°,直接寫出BP的長.23.(10分)如圖,在平面直角坐標系中,拋物線與軸交于點,點,與軸交于點,連接,位于軸右側且垂直于軸的動直線,沿軸正方向從運動到(不含點和點),且分別交拋物線、線段以及軸于點,,.連接,,,,.(1)求拋物線的表達式;(2)如圖1,當直線運動時,求使得和相似的點點的橫坐標;(3)如圖1,當直線運動時,求面積的最大值;(4)如圖2,拋物線的對稱軸交軸于點,過點作交軸于點.點、分別在對稱軸和軸上運動,連接、.當?shù)拿娣e最大時,請直接寫出的最小值.24.(10分)如圖,已知二次函數(shù)的圖象的頂點坐標為,直線與該二次函數(shù)的圖象交于,兩點,其中點的坐標為,點在軸上.是軸上的一個動點,過點作軸的垂線分別與直線和二次函數(shù)的圖象交于,兩點.(1)求的值及這個二次函數(shù)的解析式;(2)若點的橫坐標,求的面積;(3)當時,求線段的最大值;(4)若直線與二次函數(shù)圖象的對稱軸交點為,問是否存在點,使以,,,為頂點的四邊形是平行四邊形?若存在,請求出此時點的坐標;若不存在,請說明理由.25.(12分)如圖1,矩形ABCD中,AD=2,AB=3,點E,F(xiàn)分別在邊AB,BC上,且BF=FC,連接DE,EF,并以DE,EF為邊作?DEFG.(1)連接DF,求DF的長度;(2)求?DEFG周長的最小值;(3)當?DEFG為正方形時(如圖2),連接BG,分別交EF,CD于點P、Q,求BP:QG的值.26.如圖,是的直徑,過的中點.,垂足為.(1)求證:直線是的切線;(2)若,的直徑為,求的長及的值.
參考答案一、選擇題(每題4分,共48分)1、D【分析】由切線性質得到,再由等腰三角形性質得到,然后用三角形外角性質得出【詳解】切線性質得到故選D【點睛】本題主要考查圓的切線性質、三角形的外角性質等,掌握基礎定義是解題關鍵2、C【解析】試題分析:拋物線的頂點坐標是(-3,-4).故選C.考點:二次函數(shù)的性質.3、C【解析】已知一次函數(shù)、二次函數(shù)解析式,可根據(jù)圖象的基本性質,直接判斷.解答:解:因為一次函數(shù)y=2x的圖象應該經(jīng)過原點,故可排除A、B;因為二次函數(shù)y=x2+2的圖象的頂點坐標應該為(0,2),故可排除D;正確答案是C.故選C.4、B【分析】由系數(shù)即可確定與經(jīng)過的象限.【詳解】解:經(jīng)過第一、三象限,經(jīng)過第一、三象限,B選項符合.故選:B【點睛】本題考查了一次函數(shù)與反比例函數(shù)的圖像,靈活根據(jù)的正負判斷函數(shù)經(jīng)過的象限是解題的關鍵.5、A【解析】分析:根據(jù)相似多邊形的面積之比等于相似比的平方,周長之比等于相似比可得.解:∵兩個相似多邊形面積比為1:4,∴周長之比為=1:1.故選B.點睛:相似多邊形的性質,相似多邊形對應邊之比、周長之比等于相似比,而面積之比等于相似比的平方.6、C【分析】先根據(jù)線段的比例、直徑求出OC、OP的長,再利用勾股定理求出CP的長,然后根據(jù)垂徑定理即可得.【詳解】如圖,連接OC直徑在中,弦于故選:C.【點睛】本題考查了勾股定理、垂徑定理等知識點,屬于基礎題型,掌握垂徑定理是解題關鍵.7、C【分析】根據(jù)圖像可知為反比例函數(shù),圖像過點(3000,20),代入(k),即可求出反比例函數(shù)的解析式,再求出牽引力為1200牛時,汽車的速度即可.【詳解】設函數(shù)為(k),代入(3000,20),得,得k=60000,∴,∴牽引力為1200牛時,汽車的速度為=50千米/時,故選C.【點睛】此題主要考查反比例函數(shù)的應用,解題的關鍵是找到已知條件求出反比例函數(shù)的解析式.8、D【分析】根據(jù)反比例函數(shù)的圖象的位置確定其比例系數(shù)的符號,利用反比例函數(shù)的性質進行判斷即可.【詳解】解:A.反比例函數(shù)的圖象位于第二象限,∴k﹤0故A錯誤;
B.在第二象限內隨的增大而增大,故B錯誤;
C.矩形面積為2,∵k﹤0,∴k=-2,故C錯誤;
D.∵圖象上兩個點的坐標分別是,,在第二象限內隨的增大而增大,∴,故D正確,
故選D.【點睛】本題考查了反比例函數(shù)的性質,牢記反比例函數(shù)的比例系數(shù)的符號與其圖象的關系是解決本題的關鍵.9、D【分析】過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】解:過A作AD⊥BC,垂足為D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD?tan30°=120×m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD?tan60°=120×=120m,∴BC=BD+CD=m.故選D.【點睛】本題考查解直角三角形的應用-仰角俯角問題.10、C【解析】先根據(jù)規(guī)定得出函數(shù)y=2★x的解析式,再利用一次函數(shù)與反比例函數(shù)的圖象性質即可求解.【詳解】由題意,可得當2<x,即x>2時,y=2+x,y是x的一次函數(shù),圖象是一條射線除去端點,故A、D錯誤;當2≥x,即x≤2時,y=﹣,y是x的反比例函數(shù),圖象是雙曲線,分布在第二、四象限,其中在第四象限時,0<x≤2,故B錯誤.故選:C.【點睛】本題考查了新定義,函數(shù)的圖象,一次函數(shù)與反比例函數(shù)的圖象性質,根據(jù)新定義得出函數(shù)y=2★x的解析式是解題的關鍵.11、A【分析】由于,可以設F(m,n)則OA=3m,BF=2m,由于S△BEF=4,則BE=,然后即可求出E(3m,n-),依據(jù)mn=3m(n-)可求mn=1,即求出k的值.【詳解】如圖,過F作FC⊥OA于C,∵,∴OA=3OC,BF=2OC∴若設F(m,n)則OA=3m,BF=2m∵S△BEF=4∴BE=則E(3m,n-)∵E在雙曲線y=上∴mn=3m(n-)∴mn=1即k=1.故選A.【點睛】此題主要考查了反比例函數(shù)的圖象和性質、用坐標表示線段長和三角形面積,表示出E點坐標是解題關鍵.12、D【分析】根據(jù)題意畫出樹形圖即可求出兩次都摸到紅球的概率,進而得出選項.【詳解】解:設紅球為1,黑球為2,畫樹形圖得:由樹形圖可知:兩次都摸到紅球的概率為.故選:D.【點睛】本題考查用列表法與樹狀圖法求隨機事件的概率,列舉法(樹形圖法)求概率的關鍵在于列舉出所有可能的結果,列表法是一種,但當一個事件涉及三個或更多元素時,為不重不漏地列出所有可能的結果,通常采用樹形圖.二、填空題(每題4分,共24分)13、(2,3)【分析】已知解析式為頂點式,可直接根據(jù)頂點式的坐標特點,求頂點坐標,從而得出對稱軸.【詳解】解:y=(x-2)2+3是拋物線的頂點式,
根據(jù)頂點式的坐標特點可知,頂點坐標為(2,3).
故答案為(2,3)【點睛】考查將解析式化為頂點式y(tǒng)=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=h.14、(2,0)相切【分析】由網(wǎng)格容易得出AB的垂直平分線和BC的垂直平分線,它們的交點即為點M,根據(jù)圖形即可得出點M的坐標;由于C在⊙M上,如果CD與⊙M相切,那么C點必為切點;因此可連接MC,證MC是否與CD垂直即可.可根據(jù)C、M、D三點坐標,分別表示出△CMD三邊的長,然后用勾股定理來判斷∠MCD是否為直角.【詳解】解:如圖,作線段AB,CD的垂直平分線交點即為M,由圖可知經(jīng)過A、B、C三點的圓弧所在圓的圓心M的坐標為(2,0).
連接MC,MD,
∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,
又∵MC為半徑,
∴直線CD是⊙M的切線.故答案為:(2,0);相切.【點睛】本題考查的直線與圓的位置關系,圓的切線的判定等知識,在網(wǎng)格和坐標系中巧妙地與圓的幾何證明有機結合,較新穎.15、1【分析】能組合成圓錐體,那么扇形的弧長等于圓形紙片的周長.應先利用扇形的面積=圓錐的弧長×母線長÷1,得到圓錐的弧長=1扇形的面積÷母線長,進而根據(jù)圓錐的底面半徑=圓錐的弧長÷1π求解.【詳解】解:∵圓錐的弧長=1×11π÷6=4π,
∴圓錐的底面半徑=4π÷1π=1cm,
故答案為1.【點睛】解決本題的難點是得到圓錐的弧長與扇形面積之間的關系,注意利用圓錐的弧長等于底面周長這個知識點.16、相離【解析】r=2,d=3,則直線l與⊙O的位置關系是相離17、-6【分析】根據(jù)題意設AC=a,AB=b解析式為y=A點的橫坐標為-a,縱坐標為b,因為AB*AC=6,k=xy=-AB*AC=-6【詳解】解:由題意得設AC=a,AB=b解析式為y=∴AB*AC=ab=6A(-a,b)b=∴k=-ab=-6【點睛】此題主要考查了反比例函數(shù)與幾何圖形的結合,注意A點的橫坐標的符號.18、【分析】由題意根據(jù)三角形內角和定理以及相似三角形的判定定理和相似三角形的性質即可求出答案.【詳解】解:∵∠A=40°,∠B=65°,∴∠C=180°-40°-65°=75°,∴∠C=∠AED,∵∠A=∠A(公共角),∴△ADE∽△ABC,∴,∴.故答案為:.【點睛】本題考查相似三角形,解題的關鍵是熟練運用相似三角形的性質與判定,屬于基礎題型,難度較?。⒔獯痤}(共78分)19、(1),;(2)t=;(3)或或【分析】(1)如圖過點M作MD⊥AC于點D,利用相似三角形的性質求出MD即可解決問題;(2)連接PM,交AC于D,,當四邊形MNPC為菱形時,ND=,即可用t表示AD,再結合第一問的相似可以用另外一個含t式子表示AD,列方程計算即可;(3)分別用t表示出AP、AQ、PQ,再分三種情況討論:①當AQ=AP②當PQ=AQ③當PQ=AP,再分別計算即可.【詳解】解:⑴過點M作MD⊥AC于點D.∵,;∴AB=10cm.BM=AN=2t∴AM=10-2t.∵△ADM∽△ACB∴即∴∴又∴S的最大值是;⑵連接PM,交AC于D,∵四邊形MNPC是菱形,則MP⊥NC,ND=CD∵CN=8-2t∴ND=4-t∴AD=2t+4-t=t+4由⑴知AD=∴=t+4∴t=;(3)由(1)知,PE=﹣t+3,與(2)同理得:QE=AE﹣AQ=﹣t+4∴PQ===,在△APQ中,①當AQ=AP,即t=5﹣t時,解得:t1=;②當PQ=AQ,即=t時,解得:t2=,t3=5;③當PQ=AP,即=5﹣t時,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合題意,舍去,∴當t為s或s或s時,△APQ是等腰三角形.【點睛】此題主要考查了相似形綜合,用到的知識點是相似三角形的判定與性質、勾股定理、三角形的面積公式以及二次函數(shù)的最值問題,關鍵是根據(jù)題意做出輔助線,利用數(shù)形結合思想進行解答.20、(1)證明見解析;(2)證明見解析.【分析】(1)根據(jù)四邊形是菱形,得到,又推出,又點恰好平分,三線合一,(2)可證,再證,從而求得【詳解】證明:(1)連接,∵,,∴.∵四邊形是菱形,∴,,∴是等邊三角形.∵是的中點,∴(2)∵,∴.∴.∵,∴.∴.∴.∴.∴.∴.∴.【點睛】本題考查了菱形的性質、三線合一以及相似三角形的性質.21、(1);(2)8m3【分析】(1)根據(jù)函數(shù)圖象為雙曲線的一支,可設,又知(12,4)在此函數(shù)圖象上,利用待定系數(shù)法求出函數(shù)的解析式;(2)把t=6代入函數(shù)的解析式即可求出每小時的排水量.【詳解】(1)根據(jù)函數(shù)圖象為雙曲線的一支,可設,又知(12,4)在此函數(shù)圖象上,則把(12,4)代入解析式得:,解得k=48,則函數(shù)關系式為:;(2)把t=6代入得:,則每小時的排水量應該是8m3.【點睛】主要考查了反比例函數(shù)的應用,解題的關鍵是根據(jù)實際意義列出函數(shù)關系式,從實際意義中找到對應的變量的值,利用待定系數(shù)法求出函數(shù)解析式.22、(1)證明見解析;(2)①BP=;②BP=.【解析】試題分析:(1)根據(jù)已知條件易證△ACP∽△ABC,由相似三角形的性質即可證得結論;(2)①如圖,作CQ∥BM交AB延長線于Q,設BP=x,則PQ=2x,易證△APC∽△ACQ,所以AC2=AP·AQ,由此列方程,解方程即可求得BP的長;②如圖:作CQ⊥AB于點Q,作CP0=CP交AB于點P0,再證△AP0C∽△MPB,(2)的方法求得AP0的長,即可得BP的長.試題解析:(1)證明:∵∠ACP=∠B,∠BAC=∠CAP,∴△ACP∽△ABC,∴AC:AB=AP:AC,∴AC2=AP·AB;(2)①如圖,作CQ∥BM交AB延長線于Q,設BP=x,則PQ=2x∵∠PBM=∠ACP,∠PAC=∠CAQ,∴△APC∽△ACQ,由AC2=AP·AQ得:22=(3-x)(3+x),∴x=即BP=;②如圖:作CQ⊥AB于點Q,作CP0=CP交AB于點P0,∵AC=2,∴AQ=1,CQ=BQ=,設AP0=x,P0Q=PQ=1-x,BP=-1+x,∵∠BPM=∠CP0A,∠BMP=∠CAP0,∴△AP0C∽△MPB,∴,∴MP?P0C=AP0?BP=x(-1+x),解得x=∴BP=-1+=.考點:三角形綜合題.23、(1);(2);(3);(4)1.【分析】(1)待定系數(shù)法即可求拋物線的表達式;(2)由得到,從而有,點P的縱坐標為k,則,找到P點橫縱坐標之間的關系,代入二次函數(shù)的表達式中即可求出k的值,從而可求P的橫坐標;(3)先用待定系數(shù)法求出直線BC的解析式,然后設點,從而表示出,利用二次函數(shù)的性質求最大值即可;(4)通過構造直角三角形將轉化,要使取最小值,P,H,K應該與KM共線,通過驗證發(fā)現(xiàn)K點正好在原點,然后根據(jù)特殊角的三角函數(shù)求值即可.【詳解】(1)設拋物線的表達式為將,,代入拋物線的表達式中得解得∴拋物線的表達式為(2)∵直線l⊥x軸∴∵,∴設點P的縱坐標為k,則∴將代入二次函數(shù)表達式中,解得或(舍去)此時P點的橫坐標為(3)設直線BC的解析式為將,代入得解得∴直線BC的解析式為設點當時,PD取最大值,最大值為∴面積的最大值為(4)將y軸繞G點逆時針旋轉60°,作KM⊥GM于M,則,連接OP要使取最小值,P,H,K應該與KM共線,此時而此時面積的最大,點說明此時K點正好在原點O處即∴的最小值為4+6=1【點睛】本題主要考查二次函數(shù)與幾何綜合,相似三角形的判定及性質,掌握二次函數(shù)的圖象和性質,相似三角形的判定及性質是解題的關鍵.24、(1),;(2);(3)DE的最大值為;(4)存在,點的坐標為或()或(,0)【分析】(1)根據(jù)直線經(jīng)過點A(3,4)求得m=1,根據(jù)二次函數(shù)圖象的頂點坐標為M(1,0),且經(jīng)過點A(3,4)即可求解;
(2)先求得點的坐標,點D的坐標,根據(jù)三角形面積公式即可求解;(3)由題意得,則根據(jù)二次函數(shù)的性質即可求解;(4)分兩種情況:D點在E點的上方、D點在E點的下方,分別求解即可.【詳解】(1)∵直線經(jīng)過點,
∴,∴,
∵二次函數(shù)圖象的頂點坐標為,
∴設二次函數(shù)的解析式為:
∵拋物線經(jīng)過,∴,解得:,
∴二次函數(shù)的解析式為:;
(2)把代入得,
∴點的坐標為,
把代入得,
∴點D的坐標為(2,3),
∴,
∴;
(3)由題意得,
∴∴當(屬于范圍)時,DE的最大值為;
(4)滿足題意的點P是存在的,理由如下:∵直線AB:,當時,,∴點N的坐標為(1,2),∴,
∵要使四邊形為平行四邊形只要,
∴分兩種情況:
①D點在E點的上方,則
,
∴,
解得:(舍去)或;
②D點在E點的下方,則
,∴,解得:或綜上所述,滿足題意的點P是存在的,點P的坐標為或()或(,0).【點睛】主要考查了二次函數(shù)的解析式的求法和與幾何圖形結合的綜合能力的培養(yǎng).要會利用數(shù)形結合的思想把代數(shù)和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.25、(1);(2)6;(3)或.【分析】(1)平行四邊形DEFG對角線DF的長就是Rt△DCF的斜邊的長,由勾股定理求解;(2)平行四邊形DEFG周長的最小值就是求鄰邊2(DE+EF)最小值,DE+EF的最小值就是以AB為對稱軸,作點F的對稱點M,連接DM交AB于點N,點E與N點重合時即DE+EF=DM時有最小值,在Rt△DMC中由勾股定理求DM的長;(3)平行四邊形DEFG為矩形時有兩種情況,一是一般矩形,二是正方形,分類用全等三角形判定與性質,等腰直角三角形判定與性質,三角形相似的判定與性質和勾股定理求解.【詳解】解:(1)如圖1所示:∵四邊形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;(2)如圖2所示:作點F關直線AB的對稱點M,連接DM交AB于點N,連接NF,ME,點E在AB上是一個動點,①當點E不與點N重合時點M、E、D可構成一個三角形,∴ME+DE>MD,②當點E與點N重合時點M、E(N)、D在同一條直線上,∴ME+DE=MD由①和②DE+EF的值最小時就是點E與點N重合時,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD===3,∴NF+DN=MD=3,∴l(xiāng)平行四邊形DEFG=2(NF+DF)=6;(3)設AE=x,則BE=3﹣x,∵平行四邊形DEFG為矩形,∴∠DEF=90°,∵∠AED+∠BEF=90°,∠BEF+∠BFE=90°,∴∠AED=∠BFE,又∵∠A=∠EBF=90°,∴△DAE∽△EBF,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位食堂聘用合同范本
- 口罩訂貨合同范本
- 經(jīng)絡與腧穴模擬習題與答案
- 個人房屋出租委托書
- 化工銷售合同范本
- 卷膜合同范本
- 勞動退休人員 合同范本
- 三七女生節(jié)活動策劃書
- 辦事處施工合同范本
- 雙方合作利益合同范本
- 2024年單招計算機試題題庫及答案
- 肝癌科普講座課件
- 中國航天“大總師-孫家棟”
- 機電運輸安全基本知識
- 基于51單片機的無功補償裝置
- 幼兒園公開課:大班語言《相反國》課件(優(yōu)化版)
- 水利設施維護投標方案(技術標)
- 2024屆湖南省長沙市湖南師大附中等校高三上學期月考(二)語文試題(解析版)
- 上??萍及嫘W二年級下冊綜合實踐活動全冊教案
- 氣缸磨損的測量說課教案
- 《高鐵乘務安全管理及應急處置》課程教案-崔藝琳編寫
評論
0/150
提交評論