2025屆江蘇省連云港海州區(qū)七校聯(lián)考數(shù)學九上期末調研模擬試題含解析_第1頁
2025屆江蘇省連云港海州區(qū)七校聯(lián)考數(shù)學九上期末調研模擬試題含解析_第2頁
2025屆江蘇省連云港海州區(qū)七校聯(lián)考數(shù)學九上期末調研模擬試題含解析_第3頁
2025屆江蘇省連云港海州區(qū)七校聯(lián)考數(shù)學九上期末調研模擬試題含解析_第4頁
2025屆江蘇省連云港海州區(qū)七校聯(lián)考數(shù)學九上期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省連云港海州區(qū)七校聯(lián)考數(shù)學九上期末調研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,已知A(-3,3),B(-1,1.5),將線段AB向右平移5個單位長度后,點A、B恰好同時落在反比例函數(shù)(x>0)的圖象上,則等于()A.3 B.4 C.5 D.62.如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長為()A.1 B. C.2 D.3.如圖,等邊△ABC的邊長為6,P為BC上一點,BP=2,D為AC上一點,若∠APD=60°,則CD的長為()A.2 B.43 C.234.如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與的面積之比為()A. B. C. D.5.關于反比例函數(shù)y=﹣,下列說法錯誤的是()A.圖象經(jīng)過點(1,﹣3)B.圖象分布在第一、三象限C.圖象關于原點對稱D.圖象與坐標軸沒有交點6.下列圖形中,是中心對稱圖形的是()A. B. C. D.7.已有甲、乙、丙三人,甲說乙在說謊,乙說丙在說謊,丙說甲和乙都在說謊,則()A.甲說實話,乙和丙說謊 B.乙說實話,甲和丙說謊C.丙說實話,甲和乙說謊 D.甲、乙、丙都說謊8.已知點是線段的一個黃金分割點,則的值為()A. B. C. D.9.對于二次函數(shù),下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點10.若x=﹣1是關于x的一元二次方程ax2+bx﹣2=0(a≠0)的一個根,則2019﹣2a+2b的值等于()A.2015 B.2017 C.2019 D.2022二、填空題(每小題3分,共24分)11.若關于的一元二次方程(m-1)x2-4x+1=0有兩個不相等的實數(shù)根,則m的取值范圍為_____________.12.在平面直角坐標系中,點(3,-4)關于原點對稱的點的坐標是____________.13.小亮在上午8時,9時30分,10時,12時四次到室外的陽光下觀察向日葵的頭莖隨太陽轉動的情況,無意之中,他發(fā)現(xiàn)這四個時刻向日葵影子的長度各不相同,那么影子最長的時刻為________.14.某縣為做大旅游產(chǎn)業(yè),在2018年投入資金3.2億元,預計2020年投入資金6億元,設旅游產(chǎn)業(yè)投資的年平均增長率為,則可列方程為____.15.一圓錐的側面積為,底面半徑為3,則該圓錐的母線長為________.16.若是方程的一個根.則的值是________.17.已知二次函數(shù)y=-x-2x+3的圖象上有兩點A(-7,),B(-8,),則▲.(用>、<、=填空).18.如圖,在中,,,,點為邊上一點,,將繞點旋轉得到(點、、分別與點、、對應),使,邊與邊交于點,那么的長等于__________.三、解答題(共66分)19.(10分)學校想知道九年級學生對我國倡導的“一帶一路”的了解程度,隨機抽取部分九年級學生進行問卷調查,問卷設有4個選項(每位被調查的學生必選且只選一項):A.非常了解.B.了解.C.知道一點.D.完全不知道.將調查的結果繪制如下兩幅不完整的統(tǒng)計圖,請根據(jù)兩幅統(tǒng)計圖中的信息,解答下列問題:(1)求本次共調查了多少學生?(2)補全條形統(tǒng)計圖;(3)該校九年級共有600名學生,請你估計“了解”的學生約有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老師想從這3人中任選兩人做宣傳員,請用列表或畫樹狀圖法求出被選中的兩人恰好是一男生一女生的概率.20.(6分)如圖,為的直徑,點為延長線上的一點,過點作的切線,切點為,過兩點分別作的垂線,垂足分別為,連接.求證:(1)平分;(2)若,求的長.21.(6分)二次函數(shù)圖象過,,三點,點的坐標為,點的坐標為,點在軸正半軸上,且,求二次函數(shù)的表達式.22.(8分)已知關于x的一元二次方程.(1)當m為何值時,方程有兩個不相等的實數(shù)根?(2)設方程兩根分別為、,且2、2分別是邊長為5的菱形的兩條對角線,求m的值.23.(8分)我國南宋數(shù)學家楊輝在1275年提出的一個問題:“直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長一十二步(寬比長少一十二步),問闊及長各幾步.”其大意是:一矩形田地面積為864平方步,寬比長少12步,問該矩形田地的長和寬各是多少步?請用已學過的知識求出問題的解.24.(8分)如圖,在正方形ABCD中,E為邊AD的中點,點F在邊CD上,且∠BEF=90°,延長EF交BC的延長線于點G;(1)求證:△ABE∽△EGB;(2)若AB=4,求CG的長.25.(10分)如圖,直線y=ax+b與x軸交于點A(4,0),與y軸交于點B(0,﹣2),與反比例函數(shù)y=(x>0)的圖象交于點C(6,m).(1)求直線和反比例函數(shù)的表達式;(2)連接OC,在x軸上找一點P,使△OPC是以OC為腰的等腰三角形,請求出點P的坐標;(3)結合圖象,請直接寫出不等式≥ax+b的解集.26.(10分)已知直線y=x+3交x軸于點A,交y軸于點B,拋物線y=﹣x2+bx+c經(jīng)過點A,B.(1)求拋物線解析式;(2)點C(m,0)在線段OA上(點C不與A,O點重合),CD⊥OA交AB于點D,交拋物線于點E,若DE=AD,求m的值;(3)點M在拋物線上,點N在拋物線的對稱軸上,在(2)的條件下,是否存在以點D,B,M,N為頂點的四邊形為平行四邊形?若存在,請求出點N的坐標;若不存在,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)點平移規(guī)律,得到點A平移后的點的坐標為(2,3),由此計算k值.【詳解】∵已知A(-3,3),B(-1,1.5),將線段AB向右平移5個單位長度后,∴點A平移后的點坐標為(2,3),∵點A、B恰好同時落在反比例函數(shù)(x>0)的圖象上,∴,故選:D.【點睛】此題考查點平移的規(guī)律,點沿著x軸左右平移的規(guī)律是:左減右加;點沿著y軸上下平移的規(guī)律是:上加下減,熟記規(guī)律是解題的關鍵.2、D【分析】先由圓周角定理求出∠BOC的度數(shù),再過點O作OD⊥BC于點D,由垂徑定理可知CD=BC,∠DOC=∠BOC=×120°=60°,再由銳角三角函數(shù)的定義即可求出CD的長,進而可得出BC的長.【詳解】解:∵∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,過點O作OD⊥BC于點D,∵OD過圓心,∴CD=BC,∠DOC=∠BOC=×120°=60°,∴CD=OC×sin60°=2×=,∴BC=2CD=2.故選D.【點睛】本題考查的是圓周角定理、垂徑定理及銳角三角函數(shù)的定義,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.3、B【解析】由等邊三角形的性質結合條件可證明△ABP∽△PCD,由相似三角形的性質可求得CD.【詳解】∵△ABC為等邊三角形,∴∠B=∠C=60又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BPCD∵AB=BC=6,BP=2,∴PC=4,∴2CD∴CD=4故選:B.【點睛】考查相似三角形的判定與性質,掌握相似三角形的判定定理是解題的關鍵.4、C【分析】先求出,再根據(jù)平行四邊形的性質可得AB∥CD,AB=CD,從而證出△BAF∽△DEF,,然后根據(jù)相似三角形的性質即可求出結論.【詳解】解:∵∴∴∵四邊形ABCD是平行四邊形∴AB∥CD,AB=CD∴△BAF∽△DEF,∴故選C.【點睛】此題考查的是平行四邊形的性質和相似三角形的判定及性質,掌握平行四邊形的性質、利用平行證相似和相似三角形的面積比等于相似比的平方是解決此題的關鍵.5、B【解析】反比例函數(shù)y=(k≠0)的圖象k>0時位于第一、三象限,在每個象限內,y隨x的增大而減?。籯<0時位于第二、四象限,在每個象限內,y隨x的增大而增大.根據(jù)反比例函數(shù)的性質并結合其對稱性對各選項進行判斷.【詳解】A、把點(1,﹣3)代入函數(shù)解析式,﹣3=﹣3,故本選項正確,不符合題意,B、∵k=﹣2<0,∴圖象位于二、四象限,且在每個象限內,y隨x的增大而增大,故本選項錯誤,符合題意,C、反比例函數(shù)的圖象可知,圖象關于原點對稱,故本選項正確,不符合題意D、∵x、y均不能為0,故圖象與坐標軸沒有交點,故本選項正確,不符合題意.故選:B.【點睛】本題主要考查的是反比例函數(shù)的性質,是中考中比較常見的知識點,一般難度不大,需熟練掌握.6、D【分析】根據(jù)中心對稱圖形的定義:把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形,逐一判斷即可.【詳解】解:A選項不是中心對稱圖形,故本選項不符合題意;B選項不是中心對稱圖形,故本選項不符合題意;C選項不是中心對稱圖形,故本選項不符合題意;D選項是中心對稱圖形,故本選項符合題意;故選D.【點睛】此題考查的是中心對稱圖形的識別,掌握中心對稱圖形的定義是解決此題的關鍵.7、B【分析】分情況,依次推理可得.【詳解】解:A、若甲說的是實話,即乙說的是謊話,則丙沒有說謊,即甲、乙都說謊是對的,與甲說的實話相矛盾,故A不合題意;B、若乙說的是實話,即丙說的謊話,即甲、乙都說謊是錯了,即甲,乙至少有一個說了實話,與乙說的是實話不矛盾,故B符合題意;C、若丙說的是實話,甲、乙都說謊是對的,那甲說的乙在說謊是對的,與丙說的是實話相矛盾,故C不合題意;D、若甲、乙、丙都說謊,與丙說的甲和乙都在說謊,相矛盾,故D不合題意;故選:B.【點睛】本題考查推理能力,關鍵在于假設法,推出矛盾是否即可判斷對錯.8、A【解析】試題分析:根據(jù)題意得AP=AB,所以PB=AB-AP=AB,所以PB:AB=.故選B.考點:黃金分割點評:本題考查了黃金分割:把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(即AB:AC=AC:BC),叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點;其中AC=AB≈0.618AB,并且線段AB的黃金分割點有兩個.9、B【詳解】二次函數(shù),所以二次函數(shù)的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數(shù)的性質.10、A【分析】將x=﹣1代入方程得出a﹣b=2,再整體代入計算可得.【詳解】解:將x=﹣1代入方程,得:a﹣b﹣2=0,則a﹣b=2,∴原式=2019﹣2(a﹣b)=2019﹣2×2=2019﹣4=2015故選:A.【點睛】本題主要考查一元二次方程的解,解題的關鍵是掌握方程的解的概念及整體代入思想的運算.二、填空題(每小題3分,共24分)11、且【解析】試題解析:∵一元二次方程有兩個不相等的實數(shù)根,∴m?1≠0且△=16?4(m?1)>0,解得m<5且m≠1,∴m的取值范圍為m<5且m≠1.故答案為:m<5且m≠1.點睛:一元二次方程方程有兩個不相等的實數(shù)根時:12、(-3,4)【詳解】在平面直角坐標系中,點(3,-4)關于原點對稱的點的坐標是(-3,4).故答案為(-3,4).【點睛】本題考查關于原點對稱的點的坐標,兩個點關于原點對稱時,它們的坐標符號相反.13、上午8時【解析】解:根據(jù)地理知識,北半球不同時刻太陽高度角不同影長也不同,規(guī)律是由長變短,再變長.故答案為上午8時.點睛:根據(jù)北半球不同時刻物體在太陽光下的影長是由長變短,再變長來解答此題.14、【分析】根據(jù)題意,找出題目中的等量關系,列出一元二次方程即可.【詳解】解:根據(jù)題意,設旅游產(chǎn)業(yè)投資的年平均增長率為,則;故答案為:.【點睛】本題考查了一元二次方程的應用——增長率問題,解題的關鍵是熟練掌握增長率問題的等量關系,正確列出一元二次方程.15、2【分析】圓錐的側面積=底面周長×母線長÷1.【詳解】解:底面半徑為3,則底面周長=6π,設圓錐的母線長為x,圓錐的側面積=×6πx=12π.解得:x=2,故答案為2.16、【解析】根據(jù)一元二次方程的解的定義,將x=2代入已知方程,列出關于q的新方程,通過解該方程即可求得q的值.【詳解】∵x=2是方程x2-3x+q=0的一個根,

∴x=2滿足該方程,

∴22-3×2+q=0,

解得,q=2.

故答案為2.【點睛】本題考查了方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.17、>.【解析】根據(jù)已知條件求出二次函數(shù)的對稱軸和開口方向,再根據(jù)點A、B的橫坐標的大小即可判斷出y1與y1的大小關系:∵二次函數(shù)y=﹣x1﹣1x+3的對稱軸是x=﹣1,開口向下,∴在對稱軸的左側y隨x的增大而增大.∵點A(﹣7,y1),B(﹣8,y1)是二次函數(shù)y=﹣x1﹣1x+3的圖象上的兩點,且﹣7>﹣8,∴y1>y1.18、【分析】如圖,作PH⊥AB于H.利用相似三角形的性質求出PH,再證明四邊形PHGC′是矩形即可解決問題.【詳解】如圖,作PH⊥AB于H.

在Rt△ABC中,∠C=90°,AC=5,sinB=,

∴=,

∴AB=13,BC==12,

∵PC=3,

∴PB=9,

∵∠BPH∽△BAC,

∴,

∴,

∴PH=,

∵AB∥B′C′,

∴∠HGC′=∠C′=∠PHG=90°,

∴四邊形PHGC′是矩形,

∴CG′=PH=,

∴A′G=5-=,

故答案為.【點睛】此題考查旋轉變換,平行線的性質,解直角三角形等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.三、解答題(共66分)19、(1)30;(2)作圖見解析;(3)240;(4).【解析】試題分析:(1)由D選項的人數(shù)及其百分比可得總人數(shù);(2)總人數(shù)減去A、C、D選項的人數(shù)求得B的人數(shù)即可;(3)總人數(shù)乘以樣本中B選項的比例可得;(4)畫樹狀圖列出所有等可能結果,根據(jù)概率公式求解可得.試題解析:解:(1)本次調查的學生人數(shù)為6÷20%=30;(2)B選項的人數(shù)為30﹣3﹣9﹣6=12,補全圖形如下:(3)估計“了解”的學生約有600×=240名;(4)畫樹狀圖如下:由樹狀圖可知,共有6種等可能結果,其中兩人恰好是一男生一女生的有4種,∴被選中的兩人恰好是一男生一女生的概率為=.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及概率的求法,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、(1)見解析;(2)【分析】(1)連接OM,可證OM∥AC,得出∠CAM=∠AMO,由OA=OM可得∠OAM=∠AMO,從而可得出結果;(2)先求出∠MOP的度數(shù),OB的長度,則用弧長公式可求出的長.【詳解】解:(1)連接OM,∵PE為⊙O的切線,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB;(2)∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的長為.【點睛】本題考查了圓的切線的性質,弧長的計算,平行線的判定與性質以及等腰三角形的性質等知識,解題的關鍵是靈活運用這些知識解決問題.21、【分析】根據(jù)題目所給信息可以得出點C的坐標為(0,5),把A、B、C三點坐標代入可得拋物線解析式.【詳解】解∵點的坐標為點的坐標為∴又∵點在軸正半軸上∴點的坐標為設二次函數(shù)關系式為把,代入得,∴【點睛】本題考查的知識點是用待定系數(shù)法求二次函數(shù)解析式,根據(jù)題目信息得出點C的坐標是解此題的關鍵.22、(1);(2)【分析】(1)由根的判別式即可求解;(2)根據(jù)菱形對角線互相垂直且平分,由勾股定理得,又由一元二次方程根與系數(shù)的關系,所以有,據(jù)此列出關于m的方程求解.【詳解】(1)∵方程有兩個不相等的實數(shù)根,∴解得:∴當時,方程有兩個不相等的實數(shù)根;(2)由題意得:∴解得:或∵2、2分別是邊長為5的菱形的兩條對角線∴,即∴【點睛】本題考查一元二次方程根的判別式、結合菱形的性質考查勾股定理和韋達定理,熟知一元二次方程根與系數(shù)的關系是解題關鍵.23、矩形的闊為24步,長為36步.【解析】設闊為x步,則長為(x+12)步,根據(jù)面積為864,即可得出方程求解即可.【詳解】設闊為x步,則長為(x+12)步,由題意可得:x(x+12)=864,解得:x1=24,x2=﹣36(舍),24+12=36,答:矩形的闊為24步,長為36步.【點睛】本題考查了一元二次方程的應用,為面積問題,掌握好面積公式即可進行正確解答;矩形面積=矩形的長×矩形的寬.24、(1)證明見解析;(2)CG=6.【分析】(1)由正方形的性質與已知得出∠A=∠BEG,證出∠ABE=∠G,即可得出結論;(2)由AB=AD=4,E為AD的中點,得出AE=DE=2,由勾股定理得出BE=,由△ABE∽△EGB,得出,求得BG=10,即可得出結果.【詳解】(1)證明:∵四邊形ABCD為正方形,且∠BEG=90°,∴∠A=∠BEG,∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,∴∠ABE=∠G,∴△ABE∽△EGB;(2)∵AB=AD=4,E為AD的中點,∴AE=DE=2,在Rt△ABE中,BE=,由(1)知,△ABE∽△EGB,∴,即:,∴BG=10,∴CG=BG﹣BC=10﹣4=6.【點睛】本題主要考查了四邊形與相似三角形的綜合運用,熟練掌握二者相關概念是解題關鍵25、(1)y=x﹣1;y=;(1)點P1的坐標為(,0),點P1的坐標為(﹣,0),(11,0);(3)0<x≤2【解析】(1)根據(jù)點A,B的坐標,利用待定系數(shù)法即可求出直線AB的函數(shù)表達式,利用一次函數(shù)圖象上點的坐標特征可得出點C的坐標,由點C的坐標,利用待定系數(shù)法即可求出反比例函數(shù)的表達式;(1)過點C作CD⊥x軸,垂足為D點,利用勾股定理看求出OC的長,分OC=OP和CO=CP兩種情況考慮:①當OP=OC時,由OC的長可得出OP的長,進而可求出點P的坐標;②當CO=CP時,利用等腰三角形的性質可得出OD=PD,結合OD的長可得出OP的長,進而可得出點P的坐標;(3)觀察圖形,由兩函數(shù)圖象的上下位置關系,即可求出不等式≥ax+b的解集.【詳解】解:(1)將A(4,0),B(0,﹣1)代入y=ax+b,得:,解得:,∴直線AB的函數(shù)表達式為y=x﹣1.當x=2時,y=x﹣1=1,∴點C的坐標為(2,1).將C(2,1)代入y=,得:1=,解得:k=2,∴反比例函數(shù)的表達式為y=.(1)過點C作CD⊥x軸,垂足為D點,則OD=2,CD=1,∴OC=.∵OC為腰,∴分兩種情況考慮,如圖1所示:①當OP=OC時,∵OC=,∴OP=,∴點P1的坐標為(,0),點P1的坐標為(﹣,0);②當CO=CP時,DP=DO=2,∴OP=1OD=11,∴點P3的坐標為(11,0).(3)觀察函數(shù)圖象,可知:當0<x<2時,反比例函數(shù)y=的圖象在直線y=x﹣1的上方,∴不等式≥ax+b的解集為0<x≤2.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、一次函數(shù)圖象上點的坐標特征、待定系數(shù)法求反比例函數(shù)解析式、等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論