2025屆甘肅省平?jīng)鍪徐o寧縣九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第1頁
2025屆甘肅省平?jīng)鍪徐o寧縣九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第2頁
2025屆甘肅省平?jīng)鍪徐o寧縣九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第3頁
2025屆甘肅省平?jīng)鍪徐o寧縣九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第4頁
2025屆甘肅省平?jīng)鍪徐o寧縣九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2025屆甘肅省平?jīng)鍪徐o寧縣九年級數(shù)學第一學期期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.若一次函數(shù)y=ax+b(a≠0)的圖像與x軸交點坐標為(2,0),則拋物線y=ax2+bx+c的對稱軸為()A.直線x=1 B.直線x=-1 C.直線x=2 D.直線x=-22.拋物線y=﹣2(x+1)2﹣3的對稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=3 D.直線x=﹣33.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.4.拋物線y=2(x﹣2)2﹣1的頂點坐標是()A.(0,﹣1) B.(﹣2,﹣1) C.(2,﹣1) D.(0,1)5.如圖,PA是⊙O的切線,切點為A,PO的延長線交⊙O于點B,連接AB,若∠B=25°,則∠P的度數(shù)為()A.25° B.40° C.45° D.50°6.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<y2A.①② B.②③ C.②④ D.①③④7.拋物線的頂點為,與軸交于點,則該拋物線的解析式為()A. B.C. D.8.如圖,在一幅長80cm,寬50cm的矩形樹葉畫四周鑲一條金色的紙邊,制成一幅矩形掛圖,若要使整個掛圖的面積是5400cm2,設金色紙邊的寬為xcm,則滿足的方程是()A.(80+x)(50+x)=5400B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400D.(80+x)(50+2x)=54009.若將二次函數(shù)的圖象先向左平移2個單位長度,再向下平移2個單位長度,則所得圖象對應函數(shù)的表達式為()A. B.C. D.10.如圖,點A、B、C、D均在邊長為1的正方形網(wǎng)格的格點上,則sin∠BAC的值為()A. B.1 C. D.11.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個12.下列事件是隨機事件的是()A.三角形內(nèi)角和為度 B.測量某天的最低氣溫,結(jié)果為C.買一張彩票,中獎 D.太陽從東方升起二、填空題(每題4分,共24分)13.已知二次函數(shù),用配方法化為的形式為_________________,這個二次函數(shù)圖像的頂點坐標為____________.14.若m是關于x的方程x2-2x-3=0的解,則代數(shù)式4m-2m2+2的值是______.15.如果兩個相似三角形的對應邊的比是4:5,那么這兩個三角形的面積比是_____.16.如圖,點在反比例函數(shù)的圖象上,過點作AB⊥軸,AC⊥軸,垂足分別為點,若,,則的值為____.17.已知點P1(a,3)與P2(-4,b)關于原點對稱,則ab=_____.18.分別寫有數(shù)字0,|-2|,-4,,-5的五張卡片,除數(shù)字不同外其它均相同,從中任抽一張,那么抽到非負數(shù)的概率是_________.三、解答題(共78分)19.(8分)在平面直角坐標系xoy中,點A(-4,-2),將點A向右平移6個單位長度,得到點B.(1)若拋物線y=-x2+bx+c經(jīng)過點A,B,求此時拋物線的表達式;(2)在(1)的條件下的拋物線頂點為C,點D是直線BC上一動點(不與B,C重合),是否存在點D,使△ABC和以點A,B,D構(gòu)成的三角形相似?若存在,請求出此時D的坐標;若不存在,請說明理由;(3)若拋物線y=-x2+bx+c的頂點在直線y=x+2上移動,當拋物線與線段有且只有一個公共點時,求拋物線頂點橫坐標t的取值范圍.20.(8分)解方程:;21.(8分)如圖,在中,,,點在的內(nèi)部,經(jīng)過,兩點,交于點,連接并延長交于點,以,為鄰邊作.(1)判斷與的位置關系,并說明理由.(2)若點是的中點,的半徑為2,求的長.22.(10分)如圖,一枚運載火箭從地面處發(fā)射,當火箭到達點時,從位于地面處的雷達站測得的距離是6,仰角為;1后火箭到達點,此時測得仰角為(所有結(jié)果取小數(shù)點后兩位).(1)求地面雷達站到發(fā)射處的水平距離;(2)求這枚火箭從到的平均速度是多少?(參考數(shù)據(jù):,,,,,)23.(10分)如圖,在中,為邊的中點,為線段上一點,聯(lián)結(jié)并延長交邊于點,過點作的平分線,交射線于點.設.(1)當時,求的值;(2)設,求關于的函數(shù)解析式,并寫出的取值范圍;(3)當時,求的值.24.(10分)如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EF⊥BE交CD于F(1)求證:△ABE∽△DEF;(2)求EF的長.25.(12分)如圖,AB為⊙O的弦,若OA⊥OD,AB、OD相交于點C,且CD=BD.(1)判定BD與⊙O的位置關系,并證明你的結(jié)論;(2)當OA=3,OC=1時,求線段BD的長.26.如圖,在平面直角坐標系中,拋物線y=ax2+bx+c交x軸于A、B兩點,OA=1,OB=3,拋物線的頂點坐標為D(1,4).(1)求A、B兩點的坐標;(2)求拋物線的表達式;(3)過點D做直線DE//y軸,交x軸于點E,點P是拋物線上A、D兩點間的一個動點(點P不于A、D兩點重合),PA、PB與直線DE分別交于點G、F,當點P運動時,EF+EG的值是否變化,如不變,試求出該值;若變化,請說明理由。

參考答案一、選擇題(每題4分,共48分)1、A【分析】先將(2,0)代入一次函數(shù)解析式y(tǒng)=ax+b,得到2a+b=0,即b=-2a,再根據(jù)拋物線y=ax2+bx+c的對稱軸為直線x=即可求解.【詳解】解:∵一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點坐標為(2,0),

∴2a+b=0,即b=-2a,

∴拋物線y=ax2+bx+c的對稱軸為直線x=.

故選:A.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征及二次函數(shù)的性質(zhì),難度適中.用到的知識點:

點在函數(shù)的圖象上,則點的坐標滿足函數(shù)的解析式,二次函數(shù)y=ax2+bx+c的對稱軸為直線x=.2、B【分析】根據(jù)題目中拋物線的解析式,可以寫出該拋物線的對稱軸.【詳解】解:∵拋物線y=﹣2(x+1)2﹣3,∴該拋物線的對稱軸為直線x=﹣1,故選:B.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標為(h,k).3、B【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;B.是軸對稱圖形,也是中心對稱圖形,故本選項符合題意;C.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、C【解析】根據(jù)二次函數(shù)頂點式頂點坐標表示方法,直接寫出頂點坐標即可.【詳解】解:∵頂點式y(tǒng)=a(x﹣h)2+k,頂點坐標是(h,k),∴y=2(x﹣2)2﹣1的頂點坐標是(2,﹣1).故選:C.【點睛】本題考查了二次函數(shù)頂點式,解決本題的關鍵是熟練掌握二次函數(shù)頂點式中頂點坐標的表示方法.5、B【分析】連接OA,由圓周角定理得,∠AOP=2∠B=50°,根據(jù)切線定理可得∠OAP=90°,繼而推出∠P=90°﹣50°=40°.【詳解】連接OA,由圓周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切線,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故選:B.【點睛】本題考查圓周角定理、切線的性質(zhì)、三角形內(nèi)角和定理,解題的關鍵是求出∠AOP的度數(shù).6、C【解析】試題分析:根據(jù)題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據(jù)對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據(jù)函數(shù)的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大,則點睛:本題主要考查的就是二次函數(shù)的性質(zhì),屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現(xiàn)2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關系再進行判定;如果出現(xiàn)a+b+c,則看x=1時y的值;如果出現(xiàn)a-b+c,則看x=-1時y的值;如果出現(xiàn)4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數(shù),離對稱軸越遠則函數(shù)值越大,對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大.7、A【分析】設出拋物線頂點式,然后將點代入求解即可.【詳解】解:設拋物線解析式為,將點代入得:,解得:a=1,故該拋物線的解析式為:,故選:A.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式:一般地,當已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當已知拋物線的頂點或?qū)ΨQ軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.8、B【詳解】根據(jù)題意可得整副畫的長為(80+2x)cm,寬為(50+2x)cm,則根據(jù)長方形的面積公式可得:(80+2x)(50+2x)=1.故應選:B考點:一元二次方程的應用9、C【分析】根據(jù)拋物線的平移規(guī)律:上加下減,左加右減解答即可.【詳解】解:將的圖象先向左平移2個單位長度,再向下平移2個單位長度,則所得二次函數(shù)的表達式為:.故選:C.【點睛】本題考查了拋物線的平移,屬于基本知識題型,熟練掌握拋物線的平移規(guī)律是解題的關鍵.10、A【分析】連接BC,由勾股定理得AC2=BC2=12+22=5,AB2=12+32=10,則AC=BC,AC2+BC2=AB2,得出△ABC是等腰直角三角形,則∠BAC=45°,即可得出結(jié)果.【詳解】連接BC,如圖3所示;由勾股定理得:AC2=BC2=12+22=5,AB2=12+32=10,∴AC=BC,AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠BAC=45°,∴sin∠BAC=,故選:A.【點睛】本題考查了勾股定理、勾股定理的逆定理、等腰直角三角形的判定與性質(zhì)等知識;熟練掌握勾股定理和勾股定理的逆定理是解題的關鍵.11、B【解析】解:第一個圖是軸對稱圖形,又是中心對稱圖形;第二個圖是軸對稱圖形,不是中心對稱圖形;第三個圖是軸對稱圖形,又是中心對稱圖形;第四個圖是軸對稱圖形,不是中心對稱圖形;既是軸對稱圖形,又是中心對稱圖形的有2個.故選B.12、C【分析】一定發(fā)生或是不發(fā)生的事件是確定事件,可能發(fā)生也可能不發(fā)生的事件是隨機事件,根據(jù)定義判斷即可.【詳解】A.該事件不可能發(fā)生,是確定事件;B.該事件不可能發(fā)生,是確定事件;C.該事件可能發(fā)生,是隨機事件;D.該事件一定發(fā)生,是確定事件.故選:C.【點睛】此題考查事件的分類,正確理解確定事件和隨機事件的區(qū)別并熟練解題是關鍵.二、填空題(每題4分,共24分)13、【分析】先利用配方法提出二次項的系數(shù),再加上一次項系數(shù)的一半的平方來湊完全平方式,再根據(jù)頂點式即可得到頂點的坐標.【詳解】利用完全平方公式得:由此可得頂點坐標為.【點睛】本題考查了用配方法將二次函數(shù)的一般式轉(zhuǎn)化為頂點式、以及二次函數(shù)頂點坐標,熟練運用配方法是解題關鍵.14、-1【分析】先由方程的解的含義,得出m2-2m-3=0,變形得m2-2m=3,再將要求的代數(shù)式提取公因式-2,然后將m2-2m=3代入,計算即可.【詳解】解:∵m是關于x的方程x2-2x-3=0的解,

∴m2-2m-3=0,

∴m2-2m=3,

∴1m-2m2+2

=-2(m2-2m)+2

=-2×3+2

=-1.

故答案為:-1.【點睛】本題考查了利用一元二次方程的解的含義在代數(shù)式求值中的應用,明確一元二次方程的解的含義并將要求的代數(shù)式正確變形是解題的關鍵.15、16:25【分析】根據(jù)相似三角形的面積的比等于相似比的平方,據(jù)此即可求解.【詳解】解:∵兩個相似三角形的相似比為:,∴這兩個三角形的面積比;故答案為:∶.【點睛】本題考查了相似三角形性質(zhì),解題的關鍵是熟記相似三角形的性質(zhì).(1)相似三角形周長的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.16、【分析】求出點A坐標,即可求出k的值.【詳解】解:根據(jù)題意,設點A的坐標為(x,y),∵,,AB⊥軸,AC⊥軸,∴點A的橫坐標為:;點A的縱坐標為:;∵點A在反比例函數(shù)的圖象上,∴;故答案為:.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式,解題的關鍵是熟練掌握反比例函數(shù)圖象上點的坐標特征.17、﹣1【分析】根據(jù)平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y)可得到a,b的值,再代入ab中可得到答案.【詳解】解:∵P(a,3)與P′(-4,b)關于原點的對稱,

∴a=4,b=-3,

∴ab=4×(-3)=-1,

故答案為:-1.【點睛】此題主要考查了坐標系中的點關于原點對稱的坐標特點.注意:關于原點對稱的點,橫縱坐標分別互為相反數(shù).18、【分析】根據(jù)概率的求解公式,首先弄清非負數(shù)卡片有3張,共有5張卡片,即可算出概率.【詳解】由題意,得數(shù)字是非負數(shù)的卡片有0,|-2|,,共3張,則抽到非負數(shù)的概率是,故答案為:.【點睛】此題主要考查概率的求解,熟練掌握,即可解題.三、解答題(共78分)19、(1)y=-x2-2x+6;(2)存在,D(,);(2)-4≤t<-2或0<t≤1.【分析】(1)根據(jù)點A的坐標結(jié)合線段AB的長度,可得出點B的坐標,根據(jù)點A,B的坐標,利用待定系數(shù)法即可求出拋物線的表達式;(2)由拋物線解析式,求出頂點C的坐標,從而求出直線BC解析式,設D(d,-2d+4),根據(jù)已知可知AD=AB=6時,△ABC∽△BAD,從而列出關于d的方程,解方程即可求解;(2)將拋物線的表達式變形為頂點時,依此代入點A,B的坐標求出t的值,再結(jié)合圖形即可得出:當拋物線與線段AB有且只有一個公共點時t的取值范圍.【詳解】(1)∵點A的坐標為(-4,-2),將點A向右平移6個單位長度得到點B,∴點B的坐標為(2,-2).∵拋物線y=-x2+bx+c過點,∴,解得∴拋物線表達式為y=-x2-2x+6(2)存在.如圖由(1)得,y=-x2-2x+6=-(x+1)2+7,∴C(-1,7)設直線BC解析式為y=kx+b∴解之得,∴l(xiāng)BC:y=-2x+4設D(d,-2d+4),∵在△ABC中AC=BC∴當且僅當AD=AB=6時,兩三角形相似即(-4-d)2+(-2+2d-4)2=26時,△ABC∽△BAD,解之得,d1=、d2=2(舍去)∴存在點D,使△ABC和以點A,B,D構(gòu)成的三角形相似,此時點D(,);(2)如圖:拋物線y=-x2+bx+c頂點在直線上∴拋物線頂點坐標為∴拋物線表達式可化為.把代入表達式可得解得.又∵拋物線與線段AB有且只有一個公共點,∴-4≤t<-2.把代入表達式可得.解得,又∵拋物線與線段AB有且只有一個公共點,∴0<t≤1.綜上可知的取值范圍時-4≤t<-2或0<t≤1.【點睛】本題考查了點的坐標變化、待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)圖象上點的坐標特征以及三角形相似,解題的關鍵是:(1)根據(jù)點的變化,找出點B的坐標,根據(jù)點A,B的坐標,利用待定系數(shù)法求出拋物線的表達式;(2)假設△ABC∽△BAD,列出關于d的方程,(2)代入點A,B的坐標求出t值,利用數(shù)形結(jié)合找出t的取值范圍.20、1+、1-【詳解】X=1+或者x=1-21、(1)是的切線;理由見解析;(2)的長.【分析】(1)連接,求得,根據(jù)圓周角定理得到,根據(jù)平行四邊形的性質(zhì)得到,得到,推出,于是得到結(jié)論;(2)連接,由點是的中點,得到,求得,根據(jù)弧長公式即可得到結(jié)論.【詳解】(1)是的切線;理由:連接,,,,,四邊形是平行四邊形,,,,,是的切線;(2)連接,點是的中點,,,,的長.【點睛】本題考查了直線與圓的位置關系,圓周角定理,平行四邊形的性質(zhì),正確的識別圖形是解題的關鍵.22、(1)雷達站到發(fā)射處的水平距離為4.38;(2)這枚火箭從到的平均速度為0.39.【分析】(1)根據(jù)余弦三角函數(shù)的定義,即可求解;(2)先求出AL的值,再求出BL的值,進而即可求解.【詳解】(1)在中,,答:雷達站到發(fā)射處的水平距離為4.38;(2)在中,,在中,,∴,∴速度為0.39,答:這枚火箭從到的平均速度為0.39.【點睛】本題主要考查解直角三角形的實際應用,掌握三角函數(shù)的定義,是解題的關鍵.23、(1);(2);(3)或2.【分析】(1)由平行四邊形ABCD,得到AD與BC平行且相等,由兩直線平行得到兩對內(nèi)錯角相等,進而確定出三角形BEF與三角形AGF相似,由相似得比例,把x=1代入已知等式,結(jié)合比例式得到AG=BE,AD=AB,即可求出所求式子的值;(2)設AB=1,根據(jù)已知等式表示出AD與BE,由AD與BC平行,得到比例式,表示出AG與DG,利用兩角相等的三角形相似得到三角形GDH與三角形ABE相似,利用相似三角形面積之比等于相似比的平方列出y與x的函數(shù)解析式,并求出x的范圍即可;(3)分兩種情況考慮:①當點H在邊DC上時,如圖1所示;②當H在DC的延長線上時,如圖2所示,分別利用相似得比例列出關于x的方程,求出方程的解即可得到x的值.【詳解】(1)在中,,,.,即,.,.為的中點,.,即.(2),不妨設.則,.,.,.,.,..在中,,....(3)①當點在邊上時,,..,..解得.②當在的延長線上時,,..,..解得.綜上所述,可知的值為或2.【點睛】此題屬于相似型綜合題,涉及的知識有:平行四邊形的性質(zhì),相似三角形的判定與性質(zhì),以及平行線的性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解本題的關鍵.24、(1)證明見解析(2)【分析】(1)由四邊形ABCD是矩形,易得∠A=∠D=90°,又由EF⊥BE,利用同角的余角相等,即可得∠DEF=∠ABE,則可證得△ABE∽△DEF.(2)由(1)△ABE∽△DEF,根據(jù)相似三角形的對應邊成比例,即可得,又由AB=6,AD=12,AE=8,利用勾股定理求得BE的長,由DE=AB-AE,求得DE的長,從而求得EF的長.【詳解】(1)證明:∵四邊形ABCD是矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°.∵EF⊥BE,∴∠AEB+∠DEF=90

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論